molecules-logo

Journal Browser

Journal Browser

Advanced Nano-Based Chemosensors and Biosensors for Detective Application—2nd Edition

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Analytical Chemistry".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 4465

Special Issue Editors


E-Mail Website
Guest Editor
College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, China
Interests: biosensors; redox cycling; immunosensors; DNA sensors; aptasensors
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Chemistry and Chemical Engineering, Pingdingshan University, Pingdingshan 467000, China
Interests: electrochemiluminescence; photoelectrochemistry; fluorescent probes; bioassays; signal amplification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Building on the foundational work of the first edition, this second edition delves deeper into the innovative advancements and broader applications of nano-based chemosensors and biosensors for detective applications. The demand for precise and versatile detection of various analytes continues to grow, driving the development of more sophisticated sensing techniques.

In this edition, we explore a diverse range of transducing methods, including optical, electrochemical, and newly emerging technologies. The integration of nanomaterials remains a central theme, with an expanded focus on advanced materials such as novel metallic and metal oxides, carbon-based materials, metal–organic frameworks, carbon dots, nanocrystals, and photon up-converting particles.

Contributions to this Special Issue are expected to highlight significant advancements in the field of nano-based chemosensors and biosensors, particularly those leveraging cutting-edge nanomaterials and innovative detection principles. Topics of interest include, but are not limited to, electrochemistry, fluorescence, colorimetry, surface plasmon resonance, and other novel sensing modalities. The aim is to showcase pioneering research that pushes the boundaries of current detection capabilities, offering new insights and practical solutions for a range of applications.

This edition aims to serve as a comprehensive resource for researchers and practitioners, providing an updated overview of the latest technological advancements and their practical applications in the field of chemosensing and biosensing.


Prof. Dr. Ning Xia
Prof. Dr. Ming La
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • nanomaterials
  • electrochemical sensor
  • fluorescent sensor
  • colorimetric analysis
  • surface plasmon resonance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

14 pages, 4058 KiB  
Article
Homogeneous Aptasensor with Electrochemical and Electrochemiluminescence Dual Detection Channels Enabled by Nanochannel-Based Probe Enrichment and DNase I Cleavage for Tumor Biomarker Detection
by Jiong Gao, Shiyue Zhang and Fengna Xi
Molecules 2025, 30(3), 746; https://doi.org/10.3390/molecules30030746 - 6 Feb 2025
Cited by 2 | Viewed by 715
Abstract
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase [...] Read more.
Homogeneous aptasensors that eliminate the need for probe labeling or immobilization hold significant potential for the rapid detection of tumor biomarkers. Herein, a homogeneous aptasensor with electrochemical (EC) and electrochemiluminescence (ECL) dual detection channels was developed by integrating nanochannel-based probe enrichment and DNase I cleavage for selective detection of the tumor biomarker, carbohydrate antigen 125 (CA125). A two-dimensional (2D) composite probe was prepared by assembling the CA125-specific aptamer and the cationic probe tris(2,2′-bipyridyl)Ru(II) (Ru(bpy)32+), which exhibited both EC and ECL properties, onto graphene oxide (GO) nanosheets (Ru(bpy)32+/Apt@GO). A vertically ordered mesoporous silica film (VMSF) with ultrasmall, uniform, and vertically aligned nanochannel arrays was rapidly grown on the inexpensive and disposable indium tin oxide (ITO) electrode, forming the detection interface. Due to the size exclusion effect of the ultrasmall nanochannels in VMSF, the Ru(bpy)32+/Apt@GO probe was unable to penetrate the nanochannels, resulting in no detectable Ru(bpy)32+ signal on the electrode. Upon specific recognition of CA125 by the aptamer, an aptamer-CA125 complex was formed and subsequently detached from GO. DNase I then cleaved the aptamer-CA125 complex, releasing CA125 and allowing Ru(bpy)32+ to dissociate into the solution. This enzymatic cleavage enabled CA125 to re-enter the binding cycle, amplifying the release of Ru(bpy)32+ into the solution. The electrostatic adsorption of the cationic Ru(bpy)32+ by VMSF significantly enhanced both the EC and ECL signals. The constructed aptasensor exhibited a linear EC detection range for CA125 from 0.1 U/mL to 100 ng/mL, with a limit of detection (LOD) of 91 mU/mL. For ECL detection, CA125 was detected over a range from 0.001 to 100 U/mL, with a LOD as low as 0.4 mU/mL. The developed aptasensor demonstrated excellent selectivity and was successfully applied to the dual-mode EC/ECL detection of CA125 in fetal bovine serum samples. Full article
Show Figures

Figure 1

Review

Jump to: Research

30 pages, 5215 KiB  
Review
SERS-Based Local Field Enhancement in Biosensing Applications
by Yangdong Xie, Jiling Xu, Danyang Shao, Yuxin Liu, Xuzhou Qu, Songtao Hu and Biao Dong
Molecules 2025, 30(1), 105; https://doi.org/10.3390/molecules30010105 - 30 Dec 2024
Cited by 1 | Viewed by 1198
Abstract
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the [...] Read more.
Surface-enhanced Raman scattering (SERS) stands out as a highly effective molecular identification technique, renowned for its exceptional sensitivity, specificity, and non-destructive nature. It has become a main technology in various sectors, including biological detection and imaging, environmental monitoring, and food safety. With the development of material science and the expansion of application fields, SERS substrate materials have also undergone significant changes: from precious metals to semiconductors, from single crystals to composite particles, from rigid to flexible substrates, and from two-dimensional to three-dimensional structures. This report delves into the advancements of the three latest types of SERS substrates: colloidal, chip-based, and tip-enhanced Raman spectroscopy. It explores the design principles, distinctive functionalities, and factors that influence SERS signal enhancement within various SERS-active nanomaterials. Furthermore, it provides an outlook on the future challenges and trends in the field. The insights presented are expected to aid researchers in the development and fabrication of SERS substrates that are not only more efficient but also more cost-effective. This progress is crucial for the multifunctionalization of SERS substrates and for their successful implementation in real-world applications. Full article
Show Figures

Figure 1

38 pages, 13089 KiB  
Review
Overview of the Design and Application of Dual-Signal Immunoassays
by Xiaohua Ma, Yijing Ge and Ning Xia
Molecules 2024, 29(19), 4551; https://doi.org/10.3390/molecules29194551 - 25 Sep 2024
Cited by 6 | Viewed by 2328
Abstract
Immunoassays have been widely used for the determination of various analytes in the fields of disease diagnosis, food safety, and environmental monitoring. Dual-signal immunoassays are now advanced and integrated detection technologies with excellent self-correction and self-validation capabilities. In this work, we summarize the [...] Read more.
Immunoassays have been widely used for the determination of various analytes in the fields of disease diagnosis, food safety, and environmental monitoring. Dual-signal immunoassays are now advanced and integrated detection technologies with excellent self-correction and self-validation capabilities. In this work, we summarize the recent advances in the development of optical and electrochemical dual-signal immunoassays, including colorimetric, fluorescence, surface-enhanced Raman spectroscopy (SERS), electrochemical, electrochemiluminescence, and photoelectrochemical methods. This review particularly emphasizes the working principle of diverse dual-signal immunoassays and the utilization of dual-functional molecules and nanomaterials. It also outlines the challenges and prospects of future research on dual-signal immunoassays. Full article
Show Figures

Graphical abstract

Back to TopTop