molecules-logo

Journal Browser

Journal Browser

Special Issue "Exclusive Papers of the Editorial Board Members (EBMs) of the Materials Chemistry Section of Molecules"

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: closed (31 October 2020).

Printed Edition Available!
A printed edition of this Special Issue is available here.

Special Issue Editor

Special Issue Information

Dear Colleagues,

This Special Issue of Molecules is dedicated to recent advances in the research area of materials chemistry and comprises a selection of exclusive papers of the Editorial Board Members (EBMs) of the Materials Chemistry Section. The section collects either research articles highlighting interesting results of the research groups of our section’s EBMs or review articles where our section’s EBMs discuss key topics in the field. This Special Issue aims to represent our young section as an attractive open-access publishing platform for Materials chemistry research.

Prof. Giuseppe Cirillo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Alginate Bioconjugate and Graphene Oxide in Multifunctional Hydrogels for Versatile Biomedical Applications
Molecules 2021, 26(5), 1355; https://doi.org/10.3390/molecules26051355 - 03 Mar 2021
Cited by 2 | Viewed by 828
Abstract
In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be [...] Read more.
In this work, we combined electrically-conductive graphene oxide and a sodium alginate-caffeic acid conjugate, acting as a functional element, in an acrylate hydrogel network to obtain multifunctional materials designed to perform multiple tasks in biomedical research. The hybrid material was found to be well tolerated by human fibroblast lung cells (MRC-5) (viability higher than 94%) and able to modify its swelling properties upon application of an external electric field. Release experiments performed using lysozyme as the model drug, showed a pH and electro-responsive behavior, with higher release amounts and rated in physiological vs. acidic pH. Finally, the retainment of the antioxidant properties of caffeic acid upon conjugation and polymerization processes (Trolox equivalent antioxidant capacity values of 1.77 and 1.48, respectively) was used to quench the effect of hydrogen peroxide in a hydrogel-assisted lysozyme crystallization procedure. Full article
Show Figures

Figure 1

Article
In-Situ Synthesis and Characterization of Nanocomposites in the Si-Ti-N and Si-Ti-C Systems
Molecules 2020, 25(22), 5236; https://doi.org/10.3390/molecules25225236 - 10 Nov 2020
Viewed by 737
Abstract
The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the [...] Read more.
The pyrolysis (1000 °C) of a liquid poly(vinylmethyl-co-methyl)silazane modified by tetrakis(dimethylamido)titanium in flowing ammonia, nitrogen and argon followed by the annealing (1000–1800 °C) of as-pyrolyzed ceramic powders have been investigated in detail. We first provide a comprehensive mechanistic study of the polymer-to-ceramic conversion based on TG experiments coupled with in-situ mass spectrometry and ex-situ solid-state NMR and FTIR spectroscopies of both the chemically modified polymer and the pyrolysis intermediates. The pyrolysis leads to X-ray amorphous materials with chemical bonding and ceramic yields controlled by the nature of the atmosphere. Then, the structural evolution of the amorphous network of ammonia-, nitrogen- and argon-treated ceramics has been studied above 1000 °C under nitrogen and argon by X-ray diffraction and electron microscopy. HRTEM images coupled with XRD confirm the formation of nanocomposites after annealing at 1400 °C. Their unique nanostructural feature appears to be the result of both the molecular origin of the materials and the nature of the atmosphere used during pyrolysis. Samples are composed of an amorphous Si-based ceramic matrix in which TiNxCy nanocrystals (x + y = 1) are homogeneously formed “in situ” in the matrix during the process and evolve toward fully crystallized compounds as TiN/Si3N4, TiNxCy (x + y = 1)/SiC and TiC/SiC nanocomposites after annealing to 1800 °C as a function of the atmosphere. Full article
Show Figures

Figure 1

Article
Quasi-3D Hyperbolic Shear Deformation Theory for the Free Vibration Study of Honeycomb Microplates with Graphene Nanoplatelets-Reinforced Epoxy Skins
Molecules 2020, 25(21), 5085; https://doi.org/10.3390/molecules25215085 - 02 Nov 2020
Cited by 10 | Viewed by 985
Abstract
A novel quasi-3D hyperbolic shear deformation theory (QHSDT) with five unknowns is here employed, together with the Hamilton’s principle and the modified couple stress theory (MCST) to analyze the vibrational behavior of rectangular micro-scale sandwich plates resting on a visco-Pasternak foundation. The sandwich [...] Read more.
A novel quasi-3D hyperbolic shear deformation theory (QHSDT) with five unknowns is here employed, together with the Hamilton’s principle and the modified couple stress theory (MCST) to analyze the vibrational behavior of rectangular micro-scale sandwich plates resting on a visco-Pasternak foundation. The sandwich structure features a Nomex or Glass phenolic honeycomb core, and two composite face sheets reinforced with graphene nanoplatelets (GPLs). The effective properties of both face sheets are evaluated by means of the Halpin-Tsai and extended rule of mixture (ERM) micromechanical schemes. The governing equations of the problem are derived by applying the Hamilton’s principle, whose solutions are determined theoretically according to a classical Navier-type procedure. A parametric study checks for the effect of different material properties, length-scale parameters, foundation parameters and geometrical properties of the honeycomb cells, and the reinforcing GPLs, on the vibration response of the layered structure, which can be of great interest for many modern engineering applications and their optimization design. Full article
Show Figures

Figure 1

Article
Microwave-Assisted Synthesis and Properties of Novel Hexaazatrinaphthylene Dendritic Scaffolds
Molecules 2020, 25(21), 5038; https://doi.org/10.3390/molecules25215038 - 30 Oct 2020
Viewed by 664
Abstract
A novel family of water-soluble π-conjugated hexaazatrinaphthylenes-based dendritic architectures constructed by hexaketocyclohexane and 1,2,4,5-benzenetetramine units is developed in a microwave-assisted organic synthesis (MAOS) approach. The structures and purity of these compounds are verified by 1H and 13C-NMR, MALDI-TOF MS, UV-vis, elemental [...] Read more.
A novel family of water-soluble π-conjugated hexaazatrinaphthylenes-based dendritic architectures constructed by hexaketocyclohexane and 1,2,4,5-benzenetetramine units is developed in a microwave-assisted organic synthesis (MAOS) approach. The structures and purity of these compounds are verified by 1H and 13C-NMR, MALDI-TOF MS, UV-vis, elemental analysis, DSC, AFM, STM and cyclic voltammetry. Full article
Show Figures

Figure 1

Communication
Mixed Amphiphilic Polymeric Nanoparticles of Chitosan, Poly(vinyl alcohol) and Poly(methyl methacrylate) for Intranasal Drug Delivery: A Preliminary In Vivo Study
Molecules 2020, 25(19), 4496; https://doi.org/10.3390/molecules25194496 - 30 Sep 2020
Cited by 5 | Viewed by 939
Abstract
Intranasal (i.n.) administration became an alternative strategy to bypass the blood–brain barrier and improve drug bioavailability in the brain. The main goal of this work was to preliminarily study the biodistribution of mixed amphiphilic mucoadhesive nanoparticles made of chitosan-g-poly(methyl methacrylate) and [...] Read more.
Intranasal (i.n.) administration became an alternative strategy to bypass the blood–brain barrier and improve drug bioavailability in the brain. The main goal of this work was to preliminarily study the biodistribution of mixed amphiphilic mucoadhesive nanoparticles made of chitosan-g-poly(methyl methacrylate) and poly(vinyl alcohol)-g-poly(methyl methacrylate) and ionotropically crosslinked with sodium tripolyphosphate in the brain after intravenous (i.v.) and i.n. administration to Hsd:ICR mice. After i.v. administration, the highest nanoparticle accumulation was detected in the liver, among other peripheral organs. After i.n. administration of a 10-times smaller nanoparticle dose, the accumulation of the nanoparticles in off-target organs was much lower than after i.v. injection. In particular, the accumulation of the nanoparticles in the liver was 20 times lower than by i.v. When brains were analyzed separately, intravenously administered nanoparticles accumulated mainly in the “top” brain, reaching a maximum after 1 h. Conversely, in i.n. administration, nanoparticles were detected in the “bottom” brain and the head (maximum reached after 2 h) owing to their retention in the nasal mucosa and could serve as a reservoir from which the drug is released and transported to the brain over time. Overall, results indicate that i.n. nanoparticles reach similar brain bioavailability, though with a 10-fold smaller dose, and accumulate in off-target organs to a more limited extent and only after redistribution through the systemic circulation. At the same time, both administration routes seem to lead to differential accumulation in brain regions, and thus, they could be beneficial in the treatment of different medical conditions. Full article
Show Figures

Figure 1

Article
Nanocrystalline Antiferromagnetic High-κ Dielectric Sr2NiMO6 (M = Te, W) with Double Perovskite Structure Type
Molecules 2020, 25(17), 3996; https://doi.org/10.3390/molecules25173996 - 02 Sep 2020
Cited by 6 | Viewed by 1204
Abstract
Double perovskites have been extensively studied in materials chemistry due to their excellent properties and novel features attributed to the coexistence of ferro/ferri/antiferro-magnetic ground state and semiconductor band gap within the same material. Double perovskites with Sr2NiMO6 (M = Te, [...] Read more.
Double perovskites have been extensively studied in materials chemistry due to their excellent properties and novel features attributed to the coexistence of ferro/ferri/antiferro-magnetic ground state and semiconductor band gap within the same material. Double perovskites with Sr2NiMO6 (M = Te, W) structure type have been synthesized using simple, non-toxic and costless aqueous citrate sol-gel route. The reaction yielded phase-pure nanocrystalline powders of two compounds: Sr2NiWO6 (SNWO) and Sr2NiTeO6 (SNTO). According to the Rietveld refinement of powder X-ray diffraction data at room temperature, Sr2NiWO6 is tetragonal (I4/m) and Sr2NiTeO6 is monoclinic (C12/m1), with average crystallite sizes of 49 and 77 nm, respectively. Structural studies have been additionally performed by Raman spectroscopy revealing optical phonons typical for vibrations of Te6+/W6+O6 octahedra. Both SNTO and SNWO possess high values of dielectric constants (341 and 308, respectively) with low dielectric loss (0.06 for SNWO) at a frequency of 1 kHz. These values decrease exponentially with the increase of frequency to 1000 kHz, with the dielectric constant being around 260 for both compounds and dielectric loss being 0.01 for SNWO and 0.04 for SNTO. The Nyquist plot for both samples confirms the non-Debye type of relaxation behavior and the dominance of shorter-range movement of charge carriers. Magnetic studies of both compounds revealed antiferromagnetic behavior, with Néel temperature (TN) being 57 K for SNWO and 35 K for SNTO. Full article
Show Figures

Figure 1

Article
PbS Quantum Dots Decorating TiO2 Nanocrystals: Synthesis, Topology, and Optical Properties of the Colloidal Hybrid Architecture
Molecules 2020, 25(12), 2939; https://doi.org/10.3390/molecules25122939 - 26 Jun 2020
Viewed by 1136
Abstract
Fabrication of heterostructures by merging two or more materials in a single object. The domains at the nanoscale represent a viable strategy to purposely address materials’ properties for applications in several fields such as catalysis, biomedicine, and energy conversion. In this case, solution-phase [...] Read more.
Fabrication of heterostructures by merging two or more materials in a single object. The domains at the nanoscale represent a viable strategy to purposely address materials’ properties for applications in several fields such as catalysis, biomedicine, and energy conversion. In this case, solution-phase seeded growth and the hot-injection method are ingeniously combined to fabricate TiO2/PbS heterostructures. The interest in such hybrid nanostructures arises from their absorption properties that make them advantageous candidates as solar cell materials for more efficient solar light harvesting and improved light conversion. Due to the strong lattice mismatch between TiO2 and PbS, the yield of the hybrid structure and the control over its properties are challenging. In this study, a systematic investigation of the heterostructure synthesis as a function of the experimental conditions (such as seeds’ surface chemistry, reaction temperature, and precursor concentration), its topology, structural properties, and optical properties are carried out. The morphological and chemical characterizations confirm the formation of small dots of PbS by decorating the oleylamine surface capped TiO2 nanocrystals under temperature control. Remarkably, structural characterization points out that the formation of heterostructures is accompanied by modification of the crystallinity of the TiO2 domain, which is mainly ascribed to lattice distortion. This result is also confirmed by photoluminescence spectroscopy, which shows intense emission in the visible range. This originated from self-trapped excitons, defects, and trap emissive states. Full article
Show Figures

Graphical abstract

Article
Suitable Polymeric Coatings to Avoid Localized Surface Plasmon Resonance Hybridization in Printed Patterns of Photothermally Responsive Gold Nanoinks
Molecules 2020, 25(11), 2499; https://doi.org/10.3390/molecules25112499 - 27 May 2020
Cited by 3 | Viewed by 1249
Abstract
When using gold nanoparticle (AuNP) inks for writing photothermal readable secure information, it is of utmost importance to obtain a sharp and stable shape of the localized surface plasmon resonance (LSPR) absorption bands in the prints. The T increase at a given irradiation [...] Read more.
When using gold nanoparticle (AuNP) inks for writing photothermal readable secure information, it is of utmost importance to obtain a sharp and stable shape of the localized surface plasmon resonance (LSPR) absorption bands in the prints. The T increase at a given irradiation wavelength (ΔTλ) is the retrieved information when printed patterns are interrogated with a laser source. As ΔTλ is proportional to the absorbance at the wavelength λ, any enlargement or change of the absorbance peak shape in a printed pattern would lead to wrong or unreliable reading. With the aim of preparing AuNP inks suitable for inkjet printing of patterns with stable and reliable photothermal reading, we prepared liquid solutions of spherical AuNP coated with a series of different polymers and with or without additional dispersant. The optical stability of the inks and of the printed patterns were checked by monitoring the shape changes of the sharp LSPR absorption band of AuNP in the visible (λmax 519 nm) along weeks of ageing. AuNP coated with neutral polyethylenglycol thiols (HS-PEG) of mw 2000–20000 showed a strong tendency to rapidly agglomerate in the dry prints. The close contact between agglomerated AuNP resulted in the loss of the pristine shape of the LSPR band, that flattened and enlarged with the further appearance of a second maximum in the Near IR, due to plasmon hybridization. The tendency to agglomerate was found directly proportional to the PEG mw. Addition of the ethylcellulose (EC) dispersant to inks resulted in an even stronger and faster tendency to LSPR peak shape deformation in the prints due to EC hydrophobicity, that induced AuNP segregation and promoted agglomeration. The introduction of a charge on the AuNP coating revelead to be the correct way to avoid agglomeration and obtain printed patterns with a sharp LSPR absorption band, stable with ageing. While the use of a simple PEG thiol with a terminal negative charge, HS-PEGCOO(−) (mw 3000), was not sufficient, overcoating with the positively charged polyallylamine hydrochloride (PAH) and further overcoating with the negatively charged polystyrene sulfonate (PSS) yielded [email protected](−)/PAH(+) and [email protected](−)/PAH(+)/PSS(−), both giving stable prints. With these inks we have shown that it is possible to write photothermally readable secure information. In particular, the generation of reliable three-wavelength photothemal barcodes has been demonstrated. Full article
Show Figures

Figure 1

Article
Hypergolics in Carbon Nanomaterials Synthesis: New Paradigms and Perspectives
Molecules 2020, 25(9), 2207; https://doi.org/10.3390/molecules25092207 - 08 May 2020
Cited by 6 | Viewed by 818
Abstract
Recently we have highlighted the importance of hypergolic reactions in carbon materials synthesis. In an effort to expand this topic with additional new paradigms, herein we present novel preparations of carbon nanomaterials, such-like carbon nanosheets and fullerols (hydroxylated fullerenes), through spontaneous ignition of [...] Read more.
Recently we have highlighted the importance of hypergolic reactions in carbon materials synthesis. In an effort to expand this topic with additional new paradigms, herein we present novel preparations of carbon nanomaterials, such-like carbon nanosheets and fullerols (hydroxylated fullerenes), through spontaneous ignition of coffee-sodium peroxide (Na2O2) and C60-Na2O2 hypergolic mixtures, respectively. In these cases, coffee and fullerenes played the role of the combustible fuel, whereas sodium peroxide the role of the strong oxidizer (e.g., source of highly concentrated H2O2). The involved reactions are both thermodynamically and kinetically favoured, thus allowing rapid product formation at ambient conditions. In addition, we provide tips on how to exploit the released energy of such highly exothermic reactions in the generation of useful work. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

Review
Environment-Induced Reversible Modulation of Optical and Electronic Properties of Lead Halide Perovskites and Possible Applications to Sensor Development: A Review
Molecules 2021, 26(3), 705; https://doi.org/10.3390/molecules26030705 - 29 Jan 2021
Cited by 3 | Viewed by 791
Abstract
Lead halide perovskites are currently widely investigated as active materials in photonic and optoelectronic devices. While the lack of long term stability actually limits their application to commercial devices, several experiments demonstrated that beyond the irreversible variation of the material properties due to [...] Read more.
Lead halide perovskites are currently widely investigated as active materials in photonic and optoelectronic devices. While the lack of long term stability actually limits their application to commercial devices, several experiments demonstrated that beyond the irreversible variation of the material properties due to degradation, several possibilities exist to reversibly modulate the perovskite characteristics by acting on the environmental conditions. These results clear the way to possible applications of lead halide perovskites to resistive and optical sensors. In this review we will describe the current state of the art of the comprehension of the environmental effects on the optical and electronic properties of lead halide perovskites, and of the exploitation of these results for the development of perovskite-based sensors. Full article
Show Figures

Figure 1

Review
Nanomaterials in Electrochemical Sensing Area: Applications and Challenges in Food Analysis
Molecules 2020, 25(23), 5759; https://doi.org/10.3390/molecules25235759 - 07 Dec 2020
Cited by 3 | Viewed by 739
Abstract
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of [...] Read more.
Recently, nanomaterials have received increasing attention due to their unique physical and chemical properties, which make them of considerable interest for applications in many fields, such as biotechnology, optics, electronics, and catalysis. The development of nanomaterials has proven fundamental for the development of smart electrochemical sensors to be used in different application fields such, as biomedical, environmental, and food analysis. In fact, they showed high performances in terms of sensitivity and selectivity. In this report, we present a survey of the application of different nanomaterials and nanocomposites with tailored morphological properties as sensing platforms for food analysis. Particular attention has been devoted to the sensors developed with nanomaterials such as carbon-based nanomaterials, metallic nanomaterials, and related nanocomposites. Finally, several examples of sensors for the detection of some analytes present in food and beverages, such as some hydroxycinnamic acids (caffeic acid, chlorogenic acid, and rosmarinic acid), caffeine (CAF), ascorbic acid (AA), and nitrite are reported and evidenced. Full article
Show Figures

Figure 1

Review
New Trends in C–C Cross-Coupling Reactions: The Use of Unconventional Conditions
Molecules 2020, 25(23), 5506; https://doi.org/10.3390/molecules25235506 - 24 Nov 2020
Cited by 4 | Viewed by 998
Abstract
The ever-growing interest in the cross-coupling reaction and its applications has increased exponentially in the last decade, owing to its efficiency and effectiveness. Transition metal-mediated cross-couplings reactions, such as Suzuki–Miyaura, Sonogashira, Heck, and others, are powerful tools for carbon–carbon bond formations and have [...] Read more.
The ever-growing interest in the cross-coupling reaction and its applications has increased exponentially in the last decade, owing to its efficiency and effectiveness. Transition metal-mediated cross-couplings reactions, such as Suzuki–Miyaura, Sonogashira, Heck, and others, are powerful tools for carbon–carbon bond formations and have become truly fundamental routes in catalysis, among other fields. Various greener strategies have emerged in recent years, given the widespread popularity of these important reactions. The present review comprises literature from 2015 onward covering the implementation of unconventional methodologies in carbon–carbon (C–C) cross-coupling reactions that embodies a variety of strategies, from the use of alternative energy sources to solvent- free and green media protocols. Full article
Show Figures

Figure 1

Review
Kissinger Method in Kinetics of Materials: Things to Beware and Be Aware of
Molecules 2020, 25(12), 2813; https://doi.org/10.3390/molecules25122813 - 18 Jun 2020
Cited by 38 | Viewed by 1747
Abstract
The Kissinger method is an overwhelmingly popular way of estimating the activation energy of thermally stimulated processes studied by differential scanning calorimetry (DSC), differential thermal analysis (DTA), and derivative thermogravimetry (DTG). The simplicity of its use is offset considerably by the number of [...] Read more.
The Kissinger method is an overwhelmingly popular way of estimating the activation energy of thermally stimulated processes studied by differential scanning calorimetry (DSC), differential thermal analysis (DTA), and derivative thermogravimetry (DTG). The simplicity of its use is offset considerably by the number of problems that result from underlying assumptions. The assumption of a first-order reaction introduces a certain evaluation error that may become very large when applying temperature programs other than linear heating. The assumption of heating is embedded in the final equation that makes the method inapplicable to any data obtained on cooling. The method yields a single activation energy in agreement with the assumption of single-step kinetics that creates a problem with the majority of applications. This is illustrated by applying the Kissinger method to some chemical reactions, crystallization, glass transition, and melting. In the cases when the isoconversional activation energy varies significantly, the Kissinger plots tend to be almost perfectly linear that means the method fails to detect the inherent complexity of the processes. It is stressed that the Kissinger method is never the best choice when one is looking for insights into the processes kinetics. Comparably simple isoconversional methods offer an insightful alternative. Full article
Show Figures

Figure 1

Back to TopTop