molecules-logo

Journal Browser

Journal Browser

Recent Advances in Chemical Sensing Materials: From Design to Application

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Materials Chemistry".

Deadline for manuscript submissions: 31 May 2025 | Viewed by 1920

Special Issue Editors


E-Mail Website
Guest Editor
College of Chemistry, Xinjiang University, Xinjiang, China
Interests: polymer synthesis; functional polymers; polymer composites; hydrogels
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor Assistant
College of Chemistry, Xinjiang University, Xinjiang, China
Interests: sensor construction; catalyst design and application

Special Issue Information

Dear Colleagues,

Chemosensors are undergoing multi-disciplinary integration development to constantly improve the efficiency of human production and life. They are widely used in various fields, including environmental monitoring, medical diagnostics, health monitoring, food safety, and other areas suitable for portable, on-site detection. However, appropriate material design strategies remain an inevitable and urgent approach for chemosensors to achieve high sensitivity and high selectivity. The topic of this Special Issue is devoted to the recent advances in chemosensors, including traditional chemosensors as well as intelligent chemosensors. The detected targets can be ions, molecules, light, thermal, or other substances that induce chemical reactions. Researchers are invited to submit original research articles, short communications, and review-type articles (e.g., comprehensive and critical literature reviews or review studies based on your recent research experience).

Dr. Xiong Liu
Guest Editor

Dr. Feng Xu
Guest Editor Assistant

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • sensors
  • material design
  • environmental monitoring
  • medical diagnostics
  • health monitoring

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 4063 KiB  
Article
High Sensitivity and Selectivity of PEDOT/Carbon Sphere Composites for Pb2+ Detection
by Lirong Ma, Zhuangzhuang Wang, Xiong Liu, Feng Xu and Tursun Abdiryim
Molecules 2025, 30(4), 798; https://doi.org/10.3390/molecules30040798 - 9 Feb 2025
Viewed by 602
Abstract
Heavy metal ions impair human health and irreversibly damage the ecosystem. As a result, it is critical to create an efficient approach for identifying heavy metal ions. The electrochemical sensor method is a type of detection method that is highly sensitive, low in [...] Read more.
Heavy metal ions impair human health and irreversibly damage the ecosystem. As a result, it is critical to create an efficient approach for identifying heavy metal ions. The electrochemical sensor method is a type of detection method that is highly sensitive, low in cost, and allows for real-time monitoring. In this study, solid carbon spheres were made using resorcinol and formaldehyde as raw materials, followed by the formation of PEDOT/carbon sphere composites via in situ oxidative polymerization, and Pb2+ was detected utilizing them as electrode modification materials. The structure of the PEDOT/carbon spherical composites was analyzed using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). To investigate the electrochemical properties of these composites, electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) were employed. In addition, the detection mechanism of the material for Pb2⁺ was studied using CV. The PEDOT/carbon sphere sensor showcased an extensive linear detection range of 7.5 × 10−2 to 1.0 μM for Pb2+ ions, achieving a low limit of detection (LOD) of 3.5 × 10−2 nM and displaying exceptional selectivity. These results can be attributed to its large surface area, superior electrical conductivity, and outstanding electron transport properties. This study offers an effective material for detecting low concentrations of Pb2+, with potential applications in future Pb2+ detection. Full article
Show Figures

Graphical abstract

17 pages, 3640 KiB  
Article
WO3−x/WS2 Nanocomposites for Fast-Response Room Temperature Gas Sensing
by Svetlana S. Nalimova, Zamir V. Shomakhov, Oksana D. Zyryanova, Valeriy M. Kondratev, Cong Doan Bui, Sergey A. Gurin, Vyacheslav A. Moshnikov and Anton A. Zhilenkov
Molecules 2025, 30(3), 566; https://doi.org/10.3390/molecules30030566 - 26 Jan 2025
Viewed by 955
Abstract
Currently, semiconductor gas sensors are being actively studied and used in various fields, including ecology, industry, and medical diagnostics. One of the major challenges is to reduce their operating temperature to room temperature. To address this issue, sensor layers based on WO3−x [...] Read more.
Currently, semiconductor gas sensors are being actively studied and used in various fields, including ecology, industry, and medical diagnostics. One of the major challenges is to reduce their operating temperature to room temperature. To address this issue, sensor layers based on WO3−x/WS2 nanostructures synthesized by the hydrothermal method have been proposed. In this paper, the morphology of the material’s surface and its elemental composition were investigated, as well as the optical band gap. Additionally, changes in the resistance of the WO3−x/WS2 sensor layers under the influence of alcohol vapors at room temperature were analyzed. The results showed that the layers exhibited a significant response, with short response and recovery times. The achieved response value to 1000 ppm of isopropanol was 1.25, with a response time of 13 s and a recovery time of 12 s. The response to 1000 ppm of ethanol was 1.35, and the response and recovery times were 20 s. This indicates that these sensor layers have promising potential for various applications. Full article
Show Figures

Figure 1

Back to TopTop