molecules-logo

Journal Browser

Journal Browser

Synthetic and Natural Pharmaceutical Molecules: From Cutting-Edge Formulation Technologies to Drug Applications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (30 November 2022) | Viewed by 29273

Special Issue Editors


E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
Interests: assessment of biocompatibility; drug delivery system formulation; application of macromolecules; characterization of dosage forms; in vitro dissolution studies; SEDDS
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
Interests: advanced drug delivery formulation; in vitro toxicity; solid dispersion; cytocompatibility; preservatives

Special Issue Information

Dear Colleagues,

In modern pharmaceutical technology, many novel drug delivery systems are developed. Connected to these formulations, the role of cutting-edge manufacturing methods and technologies containing different molecules is unquestionable. The development of new carrier systems for newly synthetized active compounds and/or extracted natural drugs is a real challenge for researchers.

The aim of this Special Issue is to go deep inside cutting-edge technologies ensuring advanced drug delivery systems containing synthetic molecules or natural compounds. The characterization of these drug formulations and the regulation of their application in therapy are also part of the focus of this Special Issue. As Guest Editors, we cordially invite you to contribute a research paper or review on any aspect related to this topic.

Dr. Ildikó Bácskay
Dr. Dániel Nemes
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • synthetic molecules
  • natural compounds
  • advanced carrier systems
  • new formulation strategy
  • new drug application
  • regulatory circumstances for drug application

Published Papers (12 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2987 KiB  
Article
Encapsulation of Bromelain in Combined Sodium Alginate and Amino Acid Carriers: Experimental Design of Simplex-Centroid Mixtures for Digestibility Evaluation
by Philipi Cavalcante Ricardo, Ricardo Lima Serudo, Ştefan Ţălu, Carlos Victor Lamarão, Henrique Duarte da Fonseca Filho, Jaqueline de Araújo Bezerra, Edgar Aparecido Sanches and Pedro Henrique Campelo
Molecules 2022, 27(19), 6364; https://doi.org/10.3390/molecules27196364 - 27 Sep 2022
Cited by 4 | Viewed by 2091
Abstract
Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating [...] Read more.
Bromelain has potential as an analgesic, an anti-inflammatory, and in cancer treatments. Despite its therapeutic effects, this protein undergoes denaturation when administered orally. Microencapsulation processes have shown potential in protein protection and as controlled release systems. Thus, this paper aimed to develop encapsulating systems using sodium alginate as a carrier material and positively charged amino acids as stabilizing agents for the controlled release of bromelain in in vitro tests. The systems were produced from the experimental design of centroid simplex mixtures. Characterizations were performed by FTIR showing that bromelain was encapsulated in all systems. XRD analyses showed that the systems are semi-crystalline solids and through SEM analysis the morphology of the formed systems followed a pattern of rough microparticles. The application of statistical analysis showed that the systems presented behavior that can be evaluated by quadratic and special cubic models, with a p-value < 0.05. The interaction between amino acids and bromelain/alginate was evaluated, and free bromelain showed a reduction of 74.0% in protein content and 23.6% in enzymatic activity at the end of gastric digestion. Furthermore, a reduction of 91.6% of protein content and 65.9% of enzymatic activity was observed at the end of intestinal digestion. The Lis system showed better interaction due to the increased stability of bromelain in terms of the amount of proteins (above 63% until the end of the intestinal phase) and the enzymatic activity of 89.3%. Thus, this study proposes the development of pH-controlled release systems aiming at increasing the stability and bioavailability of bromelain in intestinal systems. Full article
Show Figures

Figure 1

23 pages, 3382 KiB  
Article
PLGA-PVA-PEG Single Emulsion Method as a Candidate for Aminolevulinic Acid (5-ALA) Encapsulation: Laboratory Scaling Up and Stability Evaluation
by Geisiane Rosa da Silva, Amanda Luizetto dos Santos, Andrey Coatrini Soares, Marinalva Cardoso dos Santos, Sandra Cruz dos Santos, Ştefan Ţălu, Vânia Rodrigues de Lima, Vanderlei Salvador Bagnato, Edgar Aparecido Sanches and Natalia Mayumi Inada
Molecules 2022, 27(18), 6029; https://doi.org/10.3390/molecules27186029 - 15 Sep 2022
Cited by 3 | Viewed by 1768
Abstract
One of the most widely used molecules used for photodynamic therapy (PDT) is 5-aminolevulinic acid (5-ALA), a precursor in the synthesis of tetrapyrroles such as chlorophyll and heme. The 5-ALA skin permeation is considerably reduced due to its hydrophilic characteristics, decreasing its local [...] Read more.
One of the most widely used molecules used for photodynamic therapy (PDT) is 5-aminolevulinic acid (5-ALA), a precursor in the synthesis of tetrapyrroles such as chlorophyll and heme. The 5-ALA skin permeation is considerably reduced due to its hydrophilic characteristics, decreasing its local bioavailability and therapeutic effect. For this reason, five different systems containing polymeric particles of poly [D, L–lactic–co–glycolic acid (PLGA)] were developed to encapsulate 5-ALA based on single and double emulsions methodology. All systems were standardized (according to the volume of reagents and mass of pharmaceutical ingredients) and compared in terms of laboratory scaling up, particle formation and stability over time. UV-VIS spectroscopy revealed that particle absorption/adsorption of 5-ALA was dependent on the method of synthesis. Different size distribution was observed by DLS and NTA techniques, revealing that 5-ALA increased the particle size. The contact angle evaluation showed that the system hydrophobicity was dependent on the surfactant and the 5-ALA contribution. The FTIR results indicated that the type of emulsion influenced the particle formation, as well as allowing PEG functionalization and interaction with 5-ALA. According to the 1H-NMR results, the 5-ALA reduced the T1 values of polyvinyl alcohol (PVA) and PLGA in the double emulsion systems due to the decrease in molecular packing in the hydrophobic region. The results indicated that the system formed by single emulsion containing the combination PVA–PEG presented greater stability with less influence from 5-ALA. This system is a promising candidate to successfully encapsulate 5-ALA and achieve good performance and specificity for in vitro skin cancer treatment. Full article
Show Figures

Figure 1

22 pages, 2515 KiB  
Article
In Vitro and Human Pilot Studies of Different Topical Formulations Containing Rosa Species for the Treatment of Psoriasis
by Diana Ioana Gavra, Laura Endres, Ágota Pető, Liza Józsa, Pálma Fehér, Zoltán Ujhelyi, Annamária Pallag, Eleonora Marian, Laura Gratiela Vicas, Timea Claudia Ghitea, Mariana Muresan, Ildikó Bácskay and Tünde Jurca
Molecules 2022, 27(17), 5499; https://doi.org/10.3390/molecules27175499 - 26 Aug 2022
Cited by 6 | Viewed by 1882
Abstract
The aim of this study was to evaluate the phytochemical profile and antioxidant properties of the extracts from three Rosa species (R. canina, R. damascena, R. cairo), to develop and investigate topical formulations with lyophilized forms of extracts for [...] Read more.
The aim of this study was to evaluate the phytochemical profile and antioxidant properties of the extracts from three Rosa species (R. canina, R. damascena, R. cairo), to develop and investigate topical formulations with lyophilized forms of extracts for the treatment of psoriasis. Phytochemical screening and in vitro total antioxidant capacity (DPPH, FRAP, CUPRAC, SOD) of studied samples were examined and compared. Lyophilized extracts of roses were dissolved in Transcutol HP and different formulations of creams were prepared. Franz diffusion method was used to evaluate the drug release and biocompatibility was tested on HaCaT cells. Rosa damascene had the best results regarding all the analyses that were conducted. After the evaluation of topical products, the formulation with Rosa damascena extract in a self-emulsifying drug delivery system was tested on a human clinical study that involved 20 patients. At the end of the clinical study an improvement in the quality of life of the patients was observed and erythema, induration and scaling were reduced. The present study indicates that our examined extracts exhibited great phenolic content, antioxidant capacity and safety profile of topical formulation and therefore can be used as a reliable source of natural antioxidants and may be used as a complementary treatment to improve the quality life of patients with psoriasis or may be tested on another diseases. Full article
Show Figures

Graphical abstract

20 pages, 8399 KiB  
Article
Biological Evaluation, Phytochemical Screening, and Fabrication of Indigofera linifolia Leaves Extract-Loaded Nanoparticles
by Muhammad Talha, Noor Ul Islam, Muhammad Zahoor, Abdul Sadiq, Asif Nawaz, Farhat Ali Khan, Naila Gulfam, Saleh A. Alshamrani, Mohammed H. Nahari, Mohammed Abdulrahman Alshahrani, Mater H. Mahnashi and Syed Shams ul Hassan
Molecules 2022, 27(15), 4707; https://doi.org/10.3390/molecules27154707 - 23 Jul 2022
Cited by 10 | Viewed by 1933
Abstract
Indigofera linifolia is a medicinally important plant, and by virtue of its rich phytochemical composition, this plant is widely used as essential component in traditional medication systems. Due to its wide range of medicinal applications, the extract-loaded chitosan (Ext+Ch), extract-loaded PEG (Ext+PEG), and [...] Read more.
Indigofera linifolia is a medicinally important plant, and by virtue of its rich phytochemical composition, this plant is widely used as essential component in traditional medication systems. Due to its wide range of medicinal applications, the extract-loaded chitosan (Ext+Ch), extract-loaded PEG (Ext+PEG), and extract-loaded locust bean gum (Ext+LGB) nanoparticles (NPs) were prepared in the present study. The prepared NPs were then evaluated for their antibacterial, antioxidant, and antidiabetic potentials. Antibacterial activities of the crude extract and the synthesized NPs were performed following standard procedures reported in the literature. The antioxidant capabilities of extract and NPs were evaluated using DPPH free radical scavenging assay. The antidiabetic potential of the samples was evaluated against α-amylase and α-glucosidase. Ext+PEG NPs showed more potent antibacterial activity against the selected strains of bacteria with the highest activity against Escherichia coli. The lowest antibacterial potential was observed for Ext+LGB NPs. The Ext+LGB NPs IC50 value of 39 μg/mL was found to be the most potent inhibitor of DPPH free radicals. Ext+LGB NPs showed a greater extent of inhibition against α-glucosidase and α-amylase with an IC50 of 83 and 78 μg/mL, whereas for the standard acarbose the IC50 values recorded against the mentioned enzymes were 69 and 74 μg/mL, respectively. A high concentration of phenolics and flavonoids in the crude extract was confirmed through TPC and TFC tests, HPLC profiling, and GC–MS analysis. It was considered that the observed antibacterial, antidiabetic, and antioxidant potential might be due the presence of these phenolics and flavonoids detected. The plant could thus be considered as a potential candidate to be used as a remedy of the mentioned health complications. However, further research in this regard is needed to isolate the exact responsible compounds of the observed biological potentials exhibited by the crude extract. Further, toxicity and pharmacological evaluations in animal models are also needed to establish the safety or toxicity profile of the plant. Full article
Show Figures

Figure 1

26 pages, 2593 KiB  
Article
Development and Optimization of Ciprofloxacin HCl-Loaded Chitosan Nanoparticles Using Box–Behnken Experimental Design
by Noha M. Soliman, Faiyaz Shakeel, Nazrul Haq, Fars K. Alanazi, Sultan Alshehri, Mohsen Bayomi, Ahmed S. M. Alenazi and Ibrahim A. Alsarra
Molecules 2022, 27(14), 4468; https://doi.org/10.3390/molecules27144468 - 13 Jul 2022
Cited by 8 | Viewed by 1811
Abstract
Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box–Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal [...] Read more.
Various chitosan (CS)-based nanoparticles (CS-NPs) of ciprofloxacin hydrochloride (CHCl) have been investigated for therapeutic delivery and to enhance antimicrobial efficacy. However, the Box–Behnken design (BBD)-supported statistical optimization of NPs of CHCl has not been performed in the literature. As a result, the goal of this study was to look into the key interactions and quadratic impacts of formulation variables on the performance of CHCl-CS-NPs in a systematic way. To optimize CHCl-loaded CS-NPs generated by the ionic gelation process, the response surface methodology (RSM) was used. The BBD was used with three factors on three levels and three replicas at the central point. Tripolyphosphate, CS concentrations, and ultrasonication energy were chosen as independent variables after preliminary screening. Particle size (PS), polydispersity index (PDI), zeta potential (ZP), encapsulation efficiency (EE), and in vitro release were the dependent factors (responses). Prepared NPs were found in the PS range of 198–304 nm with a ZP of 27–42 mV. EE and drug release were in the range of 23–45% and 36–61%, respectively. All of the responses were optimized at the same time using a desirability function based on Design Expert® modeling and a desirability factor of 95%. The minimum inhibitory concentration (MIC) of the improved formula against two bacterial strains, Pseudomonas aeruginosa and Staphylococcus aureus, was determined. The MIC of the optimized NPs was found to be decreased 4-fold compared with pure CHCl. The predicted and observed values for the optimized formulation were nearly identical. The BBD aided in a better understanding of the intrinsic relationship between formulation variables and responses, as well as the optimization of CHCl-loaded CS-NPs in a time- and labor-efficient manner. Full article
Show Figures

Figure 1

15 pages, 1287 KiB  
Article
Fast Melt Cocoa Butter Tablet: Effect of Waxes, Starch, and PEG 6000 on Physical Properties of the Preparation
by Kai Bin Liew, Long Chiau Ming, Bey-Hing Goh and Kok Khiang Peh
Molecules 2022, 27(10), 3128; https://doi.org/10.3390/molecules27103128 - 13 May 2022
Cited by 1 | Viewed by 4619
Abstract
A fast melt tablet (FMT) is well regarded as an alternative delivery system that might help resolve a patient’s non-compliance issue. The main objective of this study was to develop a cocoa butter-based FMT. Additives, namely 5–15% of PEG 6000, beeswax, paraffin wax, [...] Read more.
A fast melt tablet (FMT) is well regarded as an alternative delivery system that might help resolve a patient’s non-compliance issue. The main objective of this study was to develop a cocoa butter-based FMT. Additives, namely 5–15% of PEG 6000, beeswax, paraffin wax, and corn starch, were incorporated into the cocoa butter-based FMT to study the effects of these additives with the physical characteristic of a cocoa butter FMT. An optimum-based formulation was chosen according to the desired hardness and disintegration time and the taste masking property achieved with the model drug—dapoxetine. The analysis demonstrated that incorporating beeswax (15%) and paraffin wax (15%) could prolong the disintegration time by at least two-fold. On the contrary, the presence of corn starch was found to cause an increase in the hardness and reduction of the disintegration time. The disintegration mechanism might be presumed due to the synergistic effect of starch swelling and cocoa butter melting. The hardness value and in vitro disintegration time of the optimum formulation were recorded at 2.93 ± 0.22 kg and 151.67 ± 6.98 s. In terms of dissolution, 80% of dapoxetine was released within 30 min and the dissolution profile was comparable to the innovator product. The formulation was palatable and stable for at least 1 year. The exposure of the FMT formulation at 30 °C for 12 months was reported to be stable. Along with the sound palatability profile and high drug load capacity, the current formulation possesses the desired characteristics to be scaled up and marketed. Full article
Show Figures

Figure 1

18 pages, 30601 KiB  
Article
Formulation, Characterization and Permeability Studies of Fenugreek (Trigonella foenum-graecum) Containing Self-Emulsifying Drug Delivery System (SEDDS)
by Dávid Sinka, Enikő Doma, Nóra Szendi, Jázmin Páll, Dóra Kósa, Ágota Pető, Pálma Fehér, Zoltán Ujhelyi, Ferenc Fenyvesi, Judit Váradi, Miklós Vecsernyés, Zsolt Szűcs, Sándor Gonda, Zoltán Cziáky, Attila Kiss-Szikszai, Gábor Vasas and Ildikó Bácskay
Molecules 2022, 27(9), 2846; https://doi.org/10.3390/molecules27092846 - 29 Apr 2022
Cited by 4 | Viewed by 2326
Abstract
Fenugreek is used as a spice and a traditional herbal medicine for a variety of purposes, given its antidiabetic and antioxidant effects. Self-emulsifying drug delivery systems (SEDDS) of herbal drugs are targets of extensive research aiming to increase bioavailability and stability. The study’s [...] Read more.
Fenugreek is used as a spice and a traditional herbal medicine for a variety of purposes, given its antidiabetic and antioxidant effects. Self-emulsifying drug delivery systems (SEDDS) of herbal drugs are targets of extensive research aiming to increase bioavailability and stability. The study’s objective was to formulate SEDDS containing Trigonella foenum-graecum extract to improve the stability of herbal extract and to increase their permeability through a Caco-2 monolayer. A characterized fenugreek dry extract was used for the formulations, while the SEDDS properties were examined by particle size analysis and zeta potential measurements. Permeability assays were carried out on Caco-2 cell monolayers, the integrity of which was monitored by follow-up trans-epithelial electric resistance measurements (TEER). Cytocompatibility was tested by the MTT method, and an indirect dissolution test was performed, using DPPH antioxidant reagent. Two different SEDDS compositions were formulated from a standardized fenugreek dry extract at either the micro- or the nanoemulsion scale with sufficient stability, enhanced bioavailability of the compounds, and sustained release from HPMC capsules. Based on our results, a modern, non-toxic, cytocompatible fenugreek SEDDS formulation with high antioxidant capacity was developed in order to improve the permeability and bioavailability of all components. Full article
Show Figures

Figure 1

18 pages, 1705 KiB  
Article
Topical Dosage Formulation of Lyophilized Philadelphus coronarius L. Leaf and Flower: Antimicrobial, Antioxidant and Anti-Inflammatory Assessment of the Plant
by Ágota Pető, Dóra Kósa, Ádám Haimhoffer, Dániel Nemes, Pálma Fehér, Zoltán Ujhelyi, Miklós Vecsernyés, Judit Váradi, Ferenc Fenyvesi, Adina Frum, Felicia Gabriela Gligor, Laura Grațiela Vicaș, Eleonora Marian, Tunde Jurca, Annamaria Pallag, Mariana Eugenia Muresan, Zoltán Tóth and Ildikó Bácskay
Molecules 2022, 27(9), 2652; https://doi.org/10.3390/molecules27092652 - 20 Apr 2022
Cited by 2 | Viewed by 2048
Abstract
Philadelphus coronarius is a versatile plant and its use in folk medicine has a long tradition; however, scientifically, the medical utilization of the herb is a less explored research field. The aim of our study was to identify and determine the quantity of [...] Read more.
Philadelphus coronarius is a versatile plant and its use in folk medicine has a long tradition; however, scientifically, the medical utilization of the herb is a less explored research field. The aim of our study was to identify and determine the quantity of the bioactive compounds of both the leaf and the flower and prepare a lyophilized product of them, from which medical ointments were formulated, since the topical application of P. coronarius has also not been studied. In vitro drug release, texture analysis and biocompatibility experiments were carried out, as well as the investigation of microbiological, antioxidant and anti-inflammatory properties. According to our results the composition and the selected excipients of the ointments have a great impact on the drug release, texture and bioavailability of the preparation. During the microbiological testing, the P. coronarius leaf was effective against Escherichia coli and Staphylococcus aureus, but it did not significantly decrease IL-4 production when it was tested on HaCaT cells. P. coronarius is a promising herb, and its topical application in antimicrobial therapy can be a useful addition to modern medical therapy. Full article
Show Figures

Graphical abstract

16 pages, 4483 KiB  
Article
ZnO Nanoparticles of Rubia cordifolia Extract Formulation Developed and Optimized with QbD Application, Considering Ex Vivo Skin Permeation, Antimicrobial and Antioxidant Properties
by Jasmeet Kaur, Md. Khalid Anwer, Ali Sartaj, Bibhu Prasad Panda, Abuzer Ali, Ameeduzzafar Zafar, Vinay Kumar, Sadaf Jamal Gilani, Chandra Kala and Mohamad Taleuzzaman
Molecules 2022, 27(4), 1450; https://doi.org/10.3390/molecules27041450 - 21 Feb 2022
Cited by 10 | Viewed by 2869
Abstract
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing [...] Read more.
The objective of the current research is to develop ZnO-Manjistha extract (ZnO-MJE) nanoparticles (NPs) and to investigate their transdermal delivery as well as antimicrobial and antioxidant activity. The optimized formulation was further evaluated based on different parameters. The ZnO-MJE-NPs were prepared by mixing 10 mM ZnSO4·7H2O and 0.8% w/v NaOH in distilled water. To the above, a solution of 10 mL MJE (10 mg) in 50 mL of zinc sulfate was added. Box–Behnken design (Design-Expert software 12.0.1.0) was used for the optimization of ZnO-MJE-NP formulations. The ZnO-MJE-NPs were evaluated for their physicochemical characterization, in vitro release activity, ex vivo permeation across rat skin, antimicrobial activity using sterilized agar media, and antioxidant activity by the DPPH free radical method. The optimized ZnO-MJE-NP formulation (F13) showed a particle size of 257.1 ± 0.76 nm, PDI value of 0.289 ± 0.003, and entrapment efficiency of 79 ± 0.33%. Drug release kinetic models showed that the formulation followed the Korsmeyer–Peppas model with a drug release of 34.50 ± 2.56 at pH 7.4 in 24 h. In ex vivo studies ZnO-MJE-NPs-opt permeation was 63.26%. The antibacterial activity was found to be enhanced in ZnO-MJE-NPs-opt and antioxidant activity was found to be highest (93.14 ± 4.05%) at 100 µg/mL concentrations. The ZnO-MJE-NPs-opt formulation showed prolonged release of the MJE and intensified permeation. Moreover, the formulation was found to show significantly (p < 0.05) better antimicrobial and antioxidant activity as compared to conventional suspension formulations. Full article
Show Figures

Graphical abstract

22 pages, 23211 KiB  
Article
Correlation of Solubility Thermodynamics of Glibenclamide with Recrystallization and In Vitro Release Profile
by Ravi Maharjan, Junoh Jeong, Ripesh Bhujel, Min-Soo Kim, Hyo-Kyung Han, Nam Ah Kim and Seong Hoon Jeong
Molecules 2022, 27(4), 1392; https://doi.org/10.3390/molecules27041392 - 18 Feb 2022
Cited by 2 | Viewed by 1930
Abstract
The solubility of glibenclamide was evaluated in DMSO, NMP, 1,4-dioxane, PEG 400, Transcutol® HP, water, and aqueous mixtures (T = 293.15~323.15 K). It was then recrystallized to solvate and compressed into tablets, of which 30-day stability and dissolution was studied. It [...] Read more.
The solubility of glibenclamide was evaluated in DMSO, NMP, 1,4-dioxane, PEG 400, Transcutol® HP, water, and aqueous mixtures (T = 293.15~323.15 K). It was then recrystallized to solvate and compressed into tablets, of which 30-day stability and dissolution was studied. It had a higher solubility in 1,4-dioxane, DMSO, NMP (Xexp = 2.30 × 103, 3.08 × 104, 2.90 × 104) at 323.15 K, its mixture (Xexp = 1.93 × 103, 1.89 × 104, 1.58 × 104) at 298.15 K, and 1,4-dioxane (w) + water (1−w) mixture ratio of w = 0.8 (Xexp = 3.74 × 103) at 323.15 K. Modified Apelblat (RMSD ≤ 0.519) and CNIBS/R-K model (RMSD ≤ 0.358) suggested good comparability with the experimental solubility. The minimum value of ΔG° vs ΔH° at 0.70 < x2 < 0.80 suggested higher solubility at that molar concentration. Based on the solubility, it was recrystallized into the solvate, which was granulated and compressed into tablets. Among the studied solvates, the tablets of glibenclamide dioxane solvate had a higher initial (95.51%) and 30-day (93.74%) dissolution compared to glibenclamide reference (28.93%). There was no stability issue even after granulation, drying, or at pH 7.4. Thus, glibenclamide dioxane solvate could be an alternative form to improve the molecule’s properties. Full article
Show Figures

Graphical abstract

17 pages, 9071 KiB  
Article
Effect of Cationic Lipid Nanoparticle Loaded siRNA with Stearylamine against Chikungunya Virus
by Manish Kumar Jeengar, Mallesh Kurakula, Poonam Patil, Ashwini More, Ramakrishna Sistla and Deepti Parashar
Molecules 2022, 27(4), 1170; https://doi.org/10.3390/molecules27041170 - 9 Feb 2022
Cited by 7 | Viewed by 2297
Abstract
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are [...] Read more.
Chikungunya is an infectious disease caused by mosquito-transmitted chikungunya virus (CHIKV). It was reported that NS1 and E2 siRNAs administration demonstrated CHIKV inhibition in in vitro as well as in vivo systems. Cationic lipids are promising for designing safe non-viral vectors and are beneficial in treating chikungunya. In this study, nanodelivery systems (hybrid polymeric/solid lipid nanoparticles) using cationic lipids (stearylamine, C9 lipid, and dioctadecylamine) and polymers (branched PEI-g-PEG -PEG) were prepared, characterized, and complexed with siRNA. The four developed delivery systems (F1, F2, F3, and F4) were assessed for stability and potential toxicities against CHIKV. In comparison to the other nanodelivery systems, F4 containing stearylamine (Octadecylamine; ODA), with an induced optimum cationic charge of 45.7 mV in the range of 152.1 nm, allowed maximum siRNA complexation, better stability, and higher transfection, with strong inhibition against the E2 and NS1 genes of CHIKV. The study concludes that cationic lipid-like ODA with ease of synthesis and characterization showed maximum complexation by structural condensation of siRNA owing to high transfection alone. Synergistic inhibition of CHIKV along with siRNA was demonstrated in both in vitro and in vivo models. Therefore, ODA-based cationic lipid nanoparticles can be explored as safe, potent, and efficient nonviral vectors overcoming siRNA in vivo complexities against chikungunya. Full article
Show Figures

Figure 1

9 pages, 1172 KiB  
Communication
Stability and Formulation of Erlotinib in Skin Creams
by David Nguyen, Philippe-Henri Secrétan, Camille Cotteret, Emmanuelle Jacques-Gustave, Céline Greco, Christine Bodemer, Joel Schlatter and Salvatore Cisternino
Molecules 2022, 27(3), 1070; https://doi.org/10.3390/molecules27031070 - 5 Feb 2022
Cited by 3 | Viewed by 2394
Abstract
Recent studies have highlighted the benefit of repurposing oral erlotinib (ERL) treatment in some rare skin diseases such as Olmsted syndrome. The use of a topical ERL skin treatment instead of the currently available ERL tablets may be appealing to treat skin disorders [...] Read more.
Recent studies have highlighted the benefit of repurposing oral erlotinib (ERL) treatment in some rare skin diseases such as Olmsted syndrome. The use of a topical ERL skin treatment instead of the currently available ERL tablets may be appealing to treat skin disorders while reducing adverse systemic effects and exposure. A method to prepare 0.2% ERL cream, without resorting to a pure active pharmaceutical ingredient, was developed and the formulation was optimized to improve ERL stability over time. Erlotinib extraction from tablets was incomplete with Transcutol, whereas dimethyl sulfoxide (DMSO) allowed 100% erlotinib recovery. During preliminary studies, ERL was shown to be sensitive to oxidation and acidic pH in solution and when added to selected creams (i.e., Excipial, Nourivan Antiox, Pentravan, and Versatile). The results also showed that use of DMSO (5% v/w), neutral pH, as well as a topical agent containing antioxidant substances (Nourivan Antiox) were key factors to maintain the initial erlotinib concentration. The proposed ERL cream formulation at neutral pH contains a homogeneous amount of ERL and is stable for at least 42 days at room temperature in Nourivan cream with antioxidant properties. Full article
Show Figures

Graphical abstract

Back to TopTop