molecules-logo

Journal Browser

Journal Browser

30th Anniversary of Molecules—Recent Advances in Inorganic Chemistry

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Inorganic Chemistry".

Deadline for manuscript submissions: 31 December 2026 | Viewed by 632

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Department of Chemistry, University of Patras, Patra, Greece
Interests: hybrid carbon-based nano-materials; encapsulation/decoration of functionalized multi-wall nanotubes with single molecule magnets (SMMs) and the study of their magnetic behaviour; application of hybrid materials in the area of spintronics or medicine (MRI agents)
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The “mother journal” of MDPI, Molecules, celebrates its 30th anniversary. Thirty years is almost as long as a researcher’s scientific life and a lot has happened since 1996. Today, Molecules is the flagship journal of MDPI in the field of general chemistry, with an IF of 4.2 and a Citescore of 7.4. Divided into 26 subdivisions, Molecules covers all fields of chemistry. The Inorganic Chemistry Section covers all aspects of inorganic chemistry including inorganic solid-state chemistry and materials, coordination polymers, metal-organic frameworks, porous materials, nanomaterials, supramolecular chemistry, organometallic chemistry, main group element compounds, catalysis, bioinorganic chemistry, medical inorganic chemistry, nuclear chemistry, and gas-phase chemistry.

In this Special Issue, we want to collect articles and reviews dedicated to the hot topics in inorganic chemistry and shed light on recent advances in these research fields.

Prof. Dr. Axel Klein
Prof. Dr. Richard Dronskowski
Dr. Vassilis Tangoulis
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • inorganic chemistry
  • coordination chemistry
  • solid-state chemistry
  • nanomaterials
  • organometallics
  • transition and main group metal chemistry
  • catalysis
  • bioinorganic chemistry

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 2160 KiB  
Article
Conformational Locking of the Geometry in Photoluminescent Cyclometalated N^C^N Ni(II) Complexes
by Maryam Niazi, Iván Maisuls, Lukas A. Mai, Sascha A. Schäfer, Alex Oster, Lukas Santiago Diaz, Dirk M. Guldi, Nikos L. Doltsinis, Cristian A. Strassert and Axel Klein
Molecules 2025, 30(9), 1901; https://doi.org/10.3390/molecules30091901 - 24 Apr 2025
Viewed by 96
Abstract
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding [...] Read more.
In our research aimed at replacing precious transition metals like platinum with abundant base metals such as nickel for efficient triplet emitters, we synthesized and studied Ni(II) complexes [Ni(LNHR)Cl]. These complexes containing the N^C^N cyclometalating dipyridyl-phenide ligand, equipped with pending H-bonding amine groups (NH(C₆H₅) (LNHPh) and NH(C₆H₅CH₂), ClLNHBn). Molecular structures determined from experimental X-ray diffractometry and density functional theory (DFT) calculations in the ground state showed marked deviation of the Cl coligand (ancillary ligand) from the ideal planar coordination, with τ4 values of 0.35 and 0.33, respectively, along with hydrogen bonding interactions of the ligand NH function with the Cl coligand. The complexes exhibit long-wavelength absorption bands at approximately 425 nm in solution, with the experimental spectra being accurately reproduced through time-dependent density functional theory (TD-DFT) calculations. Vibrationally structured emission profiles and steady-state photoluminescence quantum yields of 30% for [Ni(LNHPh)Cl] and 40% for [Ni(LNHBn)Cl] (along with dual excited state lifetimes in the ns and in the ms range) were found in frozen 2-methyl-tetrahydrofuran (2MeTHF) glassy matrices at 77 K. Furthermore, within a poly(methyl methacrylate) matrix, the complexes showed emission bands centered at around 550 nm within a temperature range from 6 K to 300 K with lifetimes similar to 77 K. Based on TD-DFT potential scans along the metal–ligand (Ni–N) coordinate, we found that in a rigid environment that restricts the geometry to the Franck-Condon region, either the triplet T5 or the singlet S4 state could contribute to the photoluminescence. Full article
Show Figures

Graphical abstract

15 pages, 1528 KiB  
Article
Anti-Cancer Stem Cell Properties of Square Planar Copper(II) Complexes with Vanillin Schiff Base Ligands
by Yihan Wang, Kuldip Singh, Chunxin Lu and Kogularamanan Suntharalingam
Molecules 2025, 30(7), 1636; https://doi.org/10.3390/molecules30071636 - 6 Apr 2025
Viewed by 264
Abstract
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast [...] Read more.
Current breast cancer therapies are unable to positively impact the lives of a significant proportion of diagnosed patients (24% based on 10-year survival rate). Breast cancer relapse and metastasis, the leading cause of breast cancer-associated deaths, is linked to the existence of breast cancer stem cells (CSCs). Redox-modulating metal complexes have been used to perturb the redox balance in breast CSCs and effect cell death. Here, we sought to expand this promising class of anti-breast CSC agents. Specifically, we report the synthesis, and anti-breast CSC properties of a series of copper(II) complexes bearing regioisomeric vanillin Schiff base ligands (14). X-ray crystallography studies show that the copper(II) complexes 14 adopt square planar geometries with the copper(II) centre coordinated to two vanillin Schiff base ligands. The most effective copper(II) complex within the series 4 displays low micromolar potency towards breast CSCs, up to 4.6-fold higher than salinomycin and cisplatin. Mechanistic studies indicate that copper(II) complex 4 elevates reactive oxygen species levels in breast CSCs, leading to activation of the JNK/p38 pathway and caspase-dependent apoptosis. Overall, this work expands the library of anti-breast CSC copper(II) complexes and provides insight into their mode of action. Full article
Show Figures

Figure 1

13 pages, 5241 KiB  
Article
Manipulating Electronic Effect of Nitrogen Donor-Based Ligands for Efficient Complexation and Separation of Palladium from Highly Acidic Solution
by Yuyang Gan, Yimin Cai, Song Huang, Xiaowei Li, Wen Feng and Lihua Yuan
Molecules 2025, 30(7), 1533; https://doi.org/10.3390/molecules30071533 - 30 Mar 2025
Viewed by 231
Abstract
Nitrogen donor-based ligands are highly promising extractants for palladium separation from high-level liquid waste (HLLW). However, the electronic effect of these ligands, a critical factor influencing their complexation ability with Pd(II), remains largely unexplored. Herein, three picolinamide-based ligands were designed and synthesized, each [...] Read more.
Nitrogen donor-based ligands are highly promising extractants for palladium separation from high-level liquid waste (HLLW). However, the electronic effect of these ligands, a critical factor influencing their complexation ability with Pd(II), remains largely unexplored. Herein, three picolinamide-based ligands were designed and synthesized, each featuring substituents with distinct electronic effects at the para-position of the pyridine (electro-donating methoxyl group for L-I, hydrogen for L-II, and electro-withdrawing ester group for L-III). The concurrent processes of Pd(II) coordination and ligand protonation enable the manipulation of pyridine nitrogen electronegativity, resulting in a tunable Pd(II) extraction performance. Notably, L-I exhibits the highest extraction efficiency at low acidities (≤1 M HNO3) but the lowest extraction at high acidities (≥3 M HNO3), whereas L-III shows the poorest efficiency at low acidities but the best performance at high acidities. The Job plot analysis and ESI-HRMS results reveal a 1:1 and 2:1 (L/Pd) stoichiometry in the Pd(II) complexation process. The single crystal X-ray analysis of Pd(NO3)2(L-II)2 complex confirms a four-coordinated Pd(II) center, with two pyridine nitrogen atoms and two monodentate nitrate oxygens forming a quadrangular geometry. Density functional theory (DFT) calculations further indicate that the formation of 2:1 (L/Pd) complexes is energetically favored, and the stronger basicity of the nitrogen atoms correlates with a higher Pd(II) binding affinity and increased susceptibility to protonation. Full article
Show Figures

Graphical abstract

Back to TopTop