molecules-logo

Journal Browser

Journal Browser

Bioactive Compounds from Traditional Medicinal Plants: Extraction, Identification, and Health Implications

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1879

Special Issue Editors


E-Mail Website
Guest Editor
Department of Analytical Chemistry, Nutrition and Bromatology, University of Santiago de Compostela, Santiago de Compostela, Spain
Interests: bioactive compounds; chromatography; green sample preparation; mass spectrometry; characterization; added-value products; cosmetics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website1 Website2
Guest Editor
Laboratorio de Investigacion y Desarrollo de Soluciones Analiticas (LIDSA), Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain
Interests: analytical chemistry of cosmetics; miniaturized sample preparation methods; bioactive compounds and natural extracts; photo-degradation of cosmetic ingredients; properties and new applications of winemaking by-products; chromatography-mass spectrometry; indoor and outdoor emerging pollutants
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

It is well known that bioactive compounds, which can be defined as plant secondary metabolites, play a critical role in the adaptation of plants to their environment. These phytochemicals, aimed towards human and animal biochemistry and metabolism, are being widely studied for their ability to provide health benefits. The obtention of bioactive compounds from traditional medicinal plants, as well as their characterization and application, has become an important part of the research field in recent years.

I cordially invite authors to contribute original articles, short communications or reviews that will provide the readers of Molecules with updated information about the recent advances in bioactive compounds from traditional medicinal plants. Such contributions may include green extraction techniques to obtain extracts from a wide range of plants and the identification and characterization of bioactive compounds including polyphenols, as well as their health implications and applications, allowing them to be employed as value-added ingredients.

Dr. Maria Celeiro
Prof. Dr. Carmen Garcia-Jares
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • bioactive compounds
  • polyphenols
  • secondary metabolites
  • traditional medicinal plants
  • extraction
  • green chemistry
  • characterization
  • health implications

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3410 KiB  
Article
Rare Prenyllipids in Wild St. John’s Wort During Three Harvest Seasons
by Paweł Górnaś and Aleksander Siger
Molecules 2025, 30(4), 901; https://doi.org/10.3390/molecules30040901 - 15 Feb 2025
Cited by 2 | Viewed by 352
Abstract
St. John’s wort (Hypericum perforatum) is a medicinal plant known for its bioactive compounds, including tocopherols and tocotrienols, which possess antioxidant and anti-inflammatory properties. These compounds play vital roles in the plant’s metabolism and have potential applications in the cosmetic and [...] Read more.
St. John’s wort (Hypericum perforatum) is a medicinal plant known for its bioactive compounds, including tocopherols and tocotrienols, which possess antioxidant and anti-inflammatory properties. These compounds play vital roles in the plant’s metabolism and have potential applications in the cosmetic and pharmaceutical industries. However, the content of these compounds in different anatomical parts of the plant, as well as the influence of environmental factors, such as the year of collection, remain underexplored. This study examined the content of tocochromanols in H. perforatum leaves, flowers, and flower buds, collected in Poland during the years 2022–2024. The results revealed that tocopherols predominantly accumulated in the leaves, while tocotrienols were more abundant in the flowers and flower buds. The year of collection had a significant effect on tocopherol levels, while tocotrienol content showed lower sensitivity to environmental fluctuations, indicating their higher stability. St. John’s wort can be considered a valuable source of biologically active compounds, especially tocotrienols, which exhibit higher stability and less susceptibility to environmental variability. The results underline the importance of considering both the plant’s anatomical parts and the year of collection when aiming to maximize the production of bioactive compounds. Full article
Show Figures

Graphical abstract

15 pages, 3366 KiB  
Article
Identification of the Hypoglycemic Active Components of Lonicera japonica Thunb. and Lonicera hypoglauca Miq. by UPLC-Q-TOF-MS
by Qinxuan Wu, Di Zhao, Ying Leng, Canhui Chen, Kunyu Xiao, Zhaoquan Wu and Fengming Chen
Molecules 2024, 29(20), 4848; https://doi.org/10.3390/molecules29204848 - 13 Oct 2024
Cited by 1 | Viewed by 1185
Abstract
Lonicera japonica Thunb. and Lonicera hypoglauca are famous Chinese medicines used for hyperglycemia; however, the specific compounds that contributed to the hypoglycemic activity and mechanism are still unknown. In this study, the antidiabetic activity of L. japonica buds and L. hypoglauca buds, roots, [...] Read more.
Lonicera japonica Thunb. and Lonicera hypoglauca are famous Chinese medicines used for hyperglycemia; however, the specific compounds that contributed to the hypoglycemic activity and mechanism are still unknown. In this study, the antidiabetic activity of L. japonica buds and L. hypoglauca buds, roots, stems, and leaves extracts was primarily evaluated, and the L. japonica buds and L. hypoglauca buds, roots, and stems extracts displayed significant hypoglycemic activity, especially for the buds of L. hypoglauca. A total of 72 high-level compounds, including 9 iridoid glycosides, 12 flavonoids, 34 organic acids, and 17 saponins, were identified by ultra-performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS) combined with the fragmentation pathways of standards from different parts of L. japonica and L. hypoglauca extracts. Among them, 19 metabolites, including 13 saponins, were reported for the first time from both medicines. Seven high-content compounds identified from L. hypoglauca buds extract were further evaluated for hypoglycemic activity. The result indicated that neochlorogenic acid, chlorogenic acid, isochlorogenic acid A, isochlorogenic acid B, and isochlorogenic acid C displayed significant antidiabetic activity, especially for isochlorogenic acid A and isochlorogenic acid C, which demonstrated that the five chlorogenic-acid-type compounds were the active ingredients of hypoglycemic activity for L. japonica and L. hypoglauca. The potential mechanism of hypoglycemic activity for isochlorogenic acid A and isochlorogenic acid C was inhibiting the intestinal α-glucosidase activity to block the supply of glucose. This study was the first to clarify the hypoglycemic active ingredients and potential mechanism of L. japonica and L. hypoglauca, providing new insights for the comprehensive utilization of both resources and the development of hypoglycemic drugs. Full article
Show Figures

Figure 1

Back to TopTop