molecules-logo

Journal Browser

Journal Browser

Biological Evaluation of Plant Extracts

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 3175

Special Issue Editor

Special Issue Information

Dear Colleagues,

I am delighted to be the Guest Editor and part of the team for this Special Issue of Molecules. We hope to offer our readers high-quality, cutting-edge research in the fields of phytochemistry, phytopharmacology and molecular biology. The biological evaluation of plant extracts is a critical step in the discovery and development of novel therapeutic agents derived from natural sources. Medicinal plants have been traditionally used for centuries in the treatment of various diseases, and modern scientific approaches aim to validate and expand this knowledge through rigorous experimental methods. Biological evaluation involves a wide range of in vitro and in vivo assays designed to assess pharmacological activities, such as antimicrobial, anti-inflammatory, antioxidant, cytotoxic, and immunomodulatory effects. These studies also encompass toxicity screening to ensure safety and identify potential side effects. The efficacy of plant extracts is largely influenced by their phytochemical composition, which includes alkaloids, flavonoids, terpenoids, phenolic compounds, and other bioactive constituents. The standardization of extract preparation, accurate quantification of active compounds, and reproducible testing models are essential for generating reliable data. Moreover, the integration of advanced techniques, such as high-throughput screening, metabolomics, proteomics, and molecular docking, further enhances our understanding of phytochemicals’ mechanisms of action. The biological evaluation of plant extracts not only supports their traditional uses but also contributes to the development of evidence-based phytotherapeutics and the identification of lead compounds for pharmaceutical development.

Dr. Rumyana Simeonova
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • phytochemistry
  • phytopharmacology
  • metabolomics
  • proteomics
  • cell signalization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

28 pages, 7979 KB  
Article
Garlic-Derived Phytochemical Candidates Predicted to Disrupt SARS-CoV-2 RBD–ACE2 Binding and Inhibit Viral Entry
by Martha Susana García-Delgado, Aldo Fernando Herrera-Rodulfo, Karen Y. Reyes-Melo, Ashly Mohan, Fernando Góngora-Rivera, Jesús Andrés Pedroza-Flores, Alma D. Paz-González, Gildardo Rivera, María del Rayo Camacho-Corona and Mauricio Carrillo-Tripp
Molecules 2025, 30(23), 4616; https://doi.org/10.3390/molecules30234616 - 1 Dec 2025
Viewed by 252
Abstract
The emergence of SARS-CoV-2 and its rapid global spread underscores the urgent need for novel therapeutic strategies. This study investigates the antiviral potential of Allium sativum (garlic) extracts against SARS-CoV-2, focusing on disruption of the spike protein’s receptor-binding domain (RBD) interaction with angiotensin-converting [...] Read more.
The emergence of SARS-CoV-2 and its rapid global spread underscores the urgent need for novel therapeutic strategies. This study investigates the antiviral potential of Allium sativum (garlic) extracts against SARS-CoV-2, focusing on disruption of the spike protein’s receptor-binding domain (RBD) interaction with angiotensin-converting enzyme 2 (ACE2), a critical step in viral entry. Two garlic cultivars (Tigre and Fermín) were processed via oven-drying or freeze-drying, followed by maceration with CH2Cl2/MeOH (1:1) and fractionation with liquid–liquid partition. ELISA immunoassays revealed that freeze-dried Tigre (TL) extracts had the highest inhibitory activity (42.16% at 0.1 µg/mL), with its aqueous fraction achieving 57.26% inhibition at 0.01 µg/mL. Chemical profiling via GC-MS found sulfur and other types of compounds. Molecular docking identified three garlic TL-derived aqueous fraction compounds with strong binding affinities (ΔG = −7.5 to −6.9 kcal/mol) to the RBD-ACE2 interface. Furthermore, ADME in silico analysis highlighted one of them (L17) as the main candidate, having high gastrointestinal absorption, blood–brain barrier permeability, and compliance with drug-likeness criteria. These findings underscore garlic-derived compounds as promising inhibitors of SARS-CoV-2 entry, calling for further preclinical validation. The study integrates experimental and computational approaches to advance natural product-based antiviral discovery, emphasizing the need for standardized formulations to address therapeutic variability across viral variants. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Graphical abstract

20 pages, 636 KB  
Article
Extraction-Dependent Antioxidant Activity of Red Horse Chestnut (Aesculus × carnea, Family Sapindaceae) Plant Parts
by Katarzyna Florkowska, Barbara Hanna Roman, Dominika Maciejewska-Markiewicz and Krystyna Cybulska
Molecules 2025, 30(23), 4550; https://doi.org/10.3390/molecules30234550 - 25 Nov 2025
Viewed by 275
Abstract
Horse chestnut is a rich source of active compounds that exhibit a variety of biological activities, including antioxidant, anti-inflammatory, and vascular sealing properties. The predominant variety is Aesculus hippocastanum L. (White Horse Chestnut), whereas there are limited reports regarding the biological activity, including [...] Read more.
Horse chestnut is a rich source of active compounds that exhibit a variety of biological activities, including antioxidant, anti-inflammatory, and vascular sealing properties. The predominant variety is Aesculus hippocastanum L. (White Horse Chestnut), whereas there are limited reports regarding the biological activity, including the antioxidant potential, of the Red Horse Chestnut (Aesculus carnea H.) variety. This study aimed to conduct a comprehensive analysis of the antioxidant activity of extracts from various parts of A. carnea, including leaves, flowers, unripe, and ripe fruit, as well as to assess the total polyphenol content of the plant, given the limited number of published studies on the subject. This section of the study examined the impact of different extraction factors, including the selection of extraction techniques (Soxhlet extraction, maceration, and ultrasound-assisted extraction) and their parameters (time, solvent type, and concentration). During the second stage of the study, extracts exhibiting the highest antioxidant potential underwent phytochemical analysis utilising HPLC, which included specific phenolic acids and flavonoids. Analyses conducted revealed that extracts from unripe fruits, particularly those prepared in concentrated ethanol using the Soxhlet apparatus, exhibited the highest antioxidant potential and polyphenolic compound content. Notable findings include myricetin (322.281 ± 6.941 mg), 4-hydroxybenzoic acid (25.360 ± 0.525 mg), ferulic acid (62.690 ± 1.350 mg), epicatechin gallate (2.950 ± 0.064 mg), 2-hydroxycinnamic acid (2.013 ± 0.043 mg), ellagic acid (1.735 ± 0.037 mg), and quercetin (1.636 ± 0.037 mg). The antioxidant activity of extracts from unripe fruit, assessed using the DPPH method, ranged from 0.31 to 3.38 [mg ascorbic acid g−1 of fresh raw material]. The results obtained suggest that red horse chestnut, with its significant levels of compounds exhibiting antioxidant potential, such as polyphenols, could serve as a valuable raw material for the pharmaceutical and cosmetics sectors. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Graphical abstract

24 pages, 387 KB  
Article
Phytochemical Composition and Antimicrobial and Antioxidant Activity of Hedysarum semenowii (Fabaceae)
by Anel Keleke, Magdalena Maciejewska-Turska, Martyna Kasela, Tomasz Baj, Liliya Ibragimova, Zuriyadda Sakipova, Olga Sermukhamedova and Agnieszka Ludwiczuk
Molecules 2025, 30(23), 4503; https://doi.org/10.3390/molecules30234503 - 21 Nov 2025
Viewed by 254
Abstract
This paper provides a comprehensive phytochemical analysis of extracts obtained from the leaves and roots of Hedysarum semenowii using HPLC/PDA-ESI-QToF/MS-MS techniques. The study identified 53 compounds, with flavones and isoflavones as the primary polyphenols. Notably, flavones were predominant in the leaves, while isoflavones [...] Read more.
This paper provides a comprehensive phytochemical analysis of extracts obtained from the leaves and roots of Hedysarum semenowii using HPLC/PDA-ESI-QToF/MS-MS techniques. The study identified 53 compounds, with flavones and isoflavones as the primary polyphenols. Notably, flavones were predominant in the leaves, while isoflavones were found mainly in the roots, potentially serving as chemotaxonomic markers. Medicarpin and its glucoside were confirmed in the roots, while mangiferin and its derivatives were identified for the first time in both the roots and leaves. Isoflavones like formononetin, calycosin, and afrormosin, along with their glucosides, were exclusive to the roots. Flavonols such as quercetin and its glycosides were abundant in the aboveground parts. Our study also identified flavones like luteolin, flavanones (naringenin), and chalcones (liquiritigenin) in various parts. Additionally, the phenolic acids gallic and ferulic acids, as well as the organic acids malic and citric acid, were also detected. The extracts demonstrated differential antimicrobial and antifungal activities in a microbroth dilution assay, with the aerial part extracts showing superior efficacy, particularly against Staphylococcus epidermidis and Pseudomonas aeruginosa. Both aerial and underground parts exhibited comparable antifungal activity against Candida species. Antioxidant activity in the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging test varied significantly, with ethanolic extracts from the aerial parts showing the highest potential (Antioxidant Activity Index (AAI) 2.07 ± 0.13). In contrast, root extracts had consistently low antioxidant activity. The results highlight the aerial parts of H. semenowii as a more promising source of biologically active compounds with antimicrobial and antioxidant properties compared to the roots. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Graphical abstract

17 pages, 2153 KB  
Article
Analytical Determination of the Lipid Fraction of Nigella sativa Fatty Oil by GC and NMR Analysis and Evaluation of Its Cytotoxic and Antioxidant Activity
by Martina Dentato, Antonella Porrello, Elena De Marino, Stefania Ponticelli, Alessia Postiglione, Alessandra Pollice, Maurizio Bruno, Natale Badalamenti, Giuseppe Bazan and Viviana Maresca
Molecules 2025, 30(21), 4300; https://doi.org/10.3390/molecules30214300 - 5 Nov 2025
Viewed by 537
Abstract
Nigella sativa, or black cumin, is used as a spice in cooking and as a food supplement like seeds or oil for its biological properties, including antioxidant capacity, anti-inflammatory action, and support for the immune system. In the present study, the chemical [...] Read more.
Nigella sativa, or black cumin, is used as a spice in cooking and as a food supplement like seeds or oil for its biological properties, including antioxidant capacity, anti-inflammatory action, and support for the immune system. In the present study, the chemical composition and biological activities of the Nigella sativa seeds’ fatty oil (NS) were investigated. The analytical composition was carried out by several techniques, such as GC-MS spectrometry and 1H- and 13C-NMR spectroscopies using appropriate internal standards. The GC-MS analysis highlighted the presence of palmitic and linoleic acid as major compounds. The antioxidant potential was evaluated through the DPPH radical-scavenging assay, and, furthermore, the NS effect on intracellular reactive oxygen species (ROS) levels was assessed in HaCaT cells (non-tumorigenic human keratinocytes) under oxidative stress induced by hydrogen peroxide. The cytotoxic and genotoxic profiles were evaluated on Caco-2 cells (human colorectal adenocarcinoma cells) using the CCK-8 viability assay and the Comet assay, respectively. Overall, the results demonstrated that NS possessed antioxidant activity, as evidenced by concentration-dependent DPPH radical scavenging and reduced intracellular ROS levels in HaCaT cells under oxidative stress. In Caco-2 colorectal cancer cells, NS induced significant cytotoxicity and DNA damage at higher concentrations, suggesting potential genotoxic effects. These findings support the dual role of NS as a natural antioxidant and a promising candidate for nutraceutical and dermatological applications, including those targeting oxidative stress-related conditions and cancer. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

27 pages, 3117 KB  
Article
Iridoids from Himatanthus sucuuba Modulate Feeding Behavior of Lutzomyia longipalpis: Integrated Experimental and Computational Approaches
by Maíra M. H. Almeida, Jefferson D. da Cruz, Maria Athana M. Silva, Samara G. Costa-Latgé, Bruno Gomes, Fernando A. Genta, Jefferson R. A. Silva and Ana Claudia F. Amaral
Molecules 2025, 30(19), 3937; https://doi.org/10.3390/molecules30193937 - 1 Oct 2025
Viewed by 572
Abstract
Control strategies for leishmaniasis increasingly target sand fly vectors through sugar feeding approaches containing bioactive compounds. This study investigated the behavioral and toxicological effects of the iridoids plumericin and isoplumericin, isolated from Himatanthus sucuuba, on Lutzomyia longipalpis by integrating computational and experimental [...] Read more.
Control strategies for leishmaniasis increasingly target sand fly vectors through sugar feeding approaches containing bioactive compounds. This study investigated the behavioral and toxicological effects of the iridoids plumericin and isoplumericin, isolated from Himatanthus sucuuba, on Lutzomyia longipalpis by integrating computational and experimental approaches focused on gustatory system interactions. The iridoids were purified by column chromatography and characterized by GC-MS. The gustatory receptor A0A1B0CHD5 was structurally characterized through homology modeling, followed by molecular docking and 100 ns molecular dynamics simulations. Behavioral assays evaluated survival, repellency, and feeding preferences using sugar solutions supplemented with an iridoid mixture. Toxicity was assessed in Drosophila melanogaster as a non-target organism model. Molecular docking results revealed comparable binding affinities between sucrose (ChemPLP score 57.96) and the iridoids plumericin (49.08) and isoplumericin (47.75). Molecular dynamics simulations confirmed the stability of the ligand–receptor complexes and revealed distinct conformational changes. The iridoids did not affect L. longipalpis survival, showed no repellency, and did not reduce sugar feeding acceptance. Preference for the control diet was observed only after continuous exposure (48 h), suggesting involvement of post-ingestive sensory processing. No acute toxicity was observed in D. melanogaster (96% survival). These findings demonstrate that iridoids preserve vector feeding behavior and survival while exhibiting low toxicity to non-target organisms, supporting their potential use in gustatory modulation strategies in leishmaniasis vector control without compromising ecological safety. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

21 pages, 3713 KB  
Article
Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan
by Gulnur N. Kuntubek, Martyna Kasela, Kaldanay K. Kozhanova, Wirginia Kukula-Koch, Łukasz Świątek, Kinga Salwa, Piotr Okińczyc, Aleksandra Józefczyk, Jarosław Widelski, Gulnara M. Kadyrbayeva, Aigerim Z. Mukhamedsadykova, Zuriyadda B. Sakipova and Anna Malm
Molecules 2025, 30(19), 3888; https://doi.org/10.3390/molecules30193888 - 26 Sep 2025
Viewed by 793
Abstract
Geum aleppicum Jacq. (yellow avens), a species traditionally used in folk medicine, remains understudied in the ethnopharmacological aspects. In this study, we comprehensively evaluated the phytochemical composition and biological activity of a hydroethanolic (50:50, v/v) extract from the aerial parts [...] Read more.
Geum aleppicum Jacq. (yellow avens), a species traditionally used in folk medicine, remains understudied in the ethnopharmacological aspects. In this study, we comprehensively evaluated the phytochemical composition and biological activity of a hydroethanolic (50:50, v/v) extract from the aerial parts of G. aleppicum collected in Kazakhstan. Using the high-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (HPLC-ESI-QTOF-MS/MS), we identified 24 compounds, predominantly phenolic acids, flavonoids, tannins, and triterpenoids. The major compound was ellagic acid (2.28 mg/g dry extract) as revealed by the reverse phase high-performance liquid chromatography–diode array detector (RP-HPLC-DAD). The extract exhibited a high polyphenol content (131.45 mg GAE/g) and strong antioxidant activity in Ferric Reducing Antioxidant Power (FRAP) assay and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay (3.82 ± 0.07 mmol Fe2+/g and 106.61 ± 0.89 mg GAE/g, respectively). Antimicrobial assay of the extract revealed notable antifungal activity against Candida spp., especially against C. glabrata and C. tropicalis with minimum inhibitory concentration (MIC) of as low as 0.125 mg/mL, showing fungistatic effect. Although the extract inhibited the cytopathic effect induced by Human Herpesvirus 1 (HHV-1) in VERO cells, it did not significantly reduce viral replication. Moreover, among human cancer cell lines studied, the extract exerted moderate and selective cytotoxicity against A549 lung cancer cells (CC50 = 75.51 µg/mL, SI = 9). These findings highlight G. aleppicum as a rich source of bioactive compounds, especially phenolics, supporting its potential for development of pharmaceutical and cosmetic applications. Full article
(This article belongs to the Special Issue Biological Evaluation of Plant Extracts)
Show Figures

Figure 1

Back to TopTop