Phytochemical Composition and Antimicrobial and Antioxidant Activity of Hedysarum semenowii (Fabaceae)
Abstract
1. Introduction
2. Results
2.1. HPLC/PDA-ESI-QToF/MS-MS Analysis
| No. | Compound | Rt (min) | Extract * | Molecular Formula | Exp. (m/z) | Calcd. (m/z) | Delta (ppm) | Product Ions (m/z) | References |
|---|---|---|---|---|---|---|---|---|---|
| 1. | Quinic acid | 1.98 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C7H12O6 | 191.0557 | 191.561 | 2.14 | 173.0416, 127.0364, 111.0409; 85.0273 | [37] |
| 2. | Sucrose | 1.97 | HsR_M99, HsR_M70, HsR_M50 | C15H18O9 | 341.1076 | – | – | 179.0549; 161.0452; 149.0429; 119.0336 | [38] |
| 3. | Malic acid | 2.14 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M | C4H6O5 | 133.0138 | 133.0142 | 3.33 | 115.0029; 89.0231; 71.0136 | [37] |
| 4. | Citric acid | 2.62 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M | C6H8O7 | 191.0175 | 191.0197 | 11.59 | 111.0085; 87.0090; 57.0348 | [37] |
| 5. | Isocitric acid | 4.05 | HsR_M99, HsR_M70, HsR_M50 | C6H8O7 | 191.0196 | 191.0197 | 0.66 | 155.009; 111.0075; 87.0076 | [39] |
| 6. | Gallic acid | 4.62 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C7H6O5 | 169.0128 | 169.0142 | 8.51 | 125.0166; 79.0155; 51.0226 | [37] |
| 7. | Hydroxybenzoic acid-O-glucoside isomer 1 | 5.32 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C13H16O8 | 299.0783 | 299.0772 | −3.53 | 137.0186; 93.0300 | [37] |
| 8. | Unknown | 7.03 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | - | 231.1315 | – | – | 213.1220; 195.1123; 185.1262 | |
| 9. | Dihydroxybenzoic acid hexoside | 8.23 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C13H16O5 | 315.0710 | 315.0722 | 3.66 | 153.0271; 109.0274 | [37] |
| 10. | Hydroxybenzoic acid-O-glucoside isomer 2 | 10.77 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M | C13H16O8 | 299.0745 | 299.0772 | 9.13 | 137.0129; 93.0251 | [37] |
| 11. | Galloyl glucoside | 12.11 | Hs_Et50M | C13H16O10 | 331.0659 | 331.0671 | 3.52 | 313.0541; 169.0096; 168.0043; 149.9948; 125.0224 | [37] |
| 12. | Kaempferol-C-glucoside | 12.43 | HsR_M99, HsR_M70, HsR_M50 | C21H22O10 | 433.1106 | 433.114 | 7.88 | 343.0830; 313.0667; 285.0764; 283.0667; 151.0391 | fragmentation |
| 13. | Tetrahydroxyxanthone-di-O,C-hexoside (neomangiferin) | 12.89 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C25H28O16 | 583.1284 | 583.1305 | 3.52 | 493.0971; 463.0866; 421.0732; 331.0447; 301.0347; 271.0306; 259.0215 | [40] |
| 14. | Mangiferin | 14.87 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C19H18O11 | 421.0780 | 421.0776 | −0.86 | 331.0394; 301.0287; 271.0273; 259.0161 | [40,41] r.s. |
| 15. | Isomangiferin | 16.08 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C19H18O11 | 421.0744 | 421.0776 | 7.66 | 331.0471; 301.0366; 259.0259 | fragmentation; [41] |
| 16. | Quercetin-O-dihexoside | 18.89 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C27H30O17 | 625.1393 | 625.141 | 2.75 | 301.0338; 300.0279; 271.0217; 255.0315; 179.0028; 151.0007 | [42] |
| 17. | Quercetin derivative | 19.17 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | – | 755.1970 | – | – | 301.0225; 300.0190; 271.0142; 255.0173; 178.9828; 150.9940 | fragmentation |
| 18. | Ferulic acid | 19.79 | HsR_M99, HsR_M70, HsR_M50 | C10H10O4 | 193.0510 | 193.0506 | −1.89 | 179.0314; 178.0255; 149.0607; 134.0367 | fragmentation; [42] |
| 19. | Myricetin-O-glucoside isomer 1 | 20.23 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C21H20O13 | 479.0836 | 479.0831 | −1.01 | 317.0279; 316.0221; 287.0190; 271.0244; 178.9987; 151.0049 | fragmentation |
| 20. | Calycosin-7-O-glucoside | 20.85 | HsR_M99, HsR_M70, HsR_M50 | C22H22O10 | 491.1174 * | 491.1195 | 4.71 | 283.0634; 268.0429; 211.0309; 184.0499 | fragmentation |
| 21. | Quercetin-O-galactoside | 21.16 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C21H20O12 | 463.0897 | 463.0882 | −3.23 | 301.0368; 300.0295; 271.0262; 255.0310; 178.9994; 151.0041 | [43,44] |
| 22. | Quercetin-3-glucoside-7-rhamnoside | 21.41 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C27H30O16 | 609.1473 | 609.1461 | −1.95 | 301.0282; 300.0190; 284.0272; 271.0198; 255.0251; 178.9949; 150.9998 | fragmentation |
| 23. | Kaempferol-O-dirhamnoside-glucoside | 21.68 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | - | 739.1830 | – | – | 593.1187; 284.0193; 285.0321; 255.0178; 227.0255; 150.9893 | [45] |
| 24. | Quercetin-3-O-glucoside | 22.46 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C21H20O12 | 463.0897 | 463.0882 | −3.23 | 403.0546; 343.0350; 301.0266; 178.9930; 150.9969 | [43,44] |
| 25. | Quercetin-3-O-arabinoside-7-glucoside | 22.94 | Hs_Et50M | C26H28O16 | 595.1278 | 595.1305 | 4.46 | 463.0855; 301.0284; 300.0226; 271.0184; 179.0165 | [46] |
| 26. | Rutoside | 23.48 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C27H30O16 | 609.1473 | 609.1461 | −1.95 | 301.0316; 300.0227; 271.0230; 255.0296; 178.9974; 151.0001 | [47,48] |
| 27. | Nicotiflorin | 24.18 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C27H30O15 | 593.1500 | 593.1512 | 2.01 | 285.0345; 284.0272; 255.0228; 227.0324; 150.9953 | [45] |
| 28. | Hyperoside | 24.66 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C21H20O12 | 463.0841 | 463.0882 | 8.83 | 301.0368; 300.0295; 271.0262; 255.0310; 178.9994; 151.0041 | [49] |
| 29. | Pentahydroxyflavone-O-pentoside (Quercetin-O-pentoside) | 28.27 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C20H18O11 | 433.0862 | 433.0776 | 4.23 | 301.0271; 300.0232; 271.0219; 255.0246; 243.0297; 178.9921; 151.0034 | [46] |
| 30. | Hexahydroxyflavone-O-hexoside (Myricetin-O-hexoside isomer 2) | 28.51 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C21H20O13 | 479.0808 | 479.0831 | 4.82 | 317.0135; 316.0078; 178.9947; 151.0001; 137.0207 | fragmentation |
| 31. | Tetrahydroxyflavone- 3-O-hexoside (Kaempferol-O- hexoside) | 29.17 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C21H20O11 | 447.0933 | 447.0933 | −0.03 | 285.0364; 284.0328; 255.0289; 151.00 | [45,47] |
| 32. | Tetrahydroxyflavone-3-O-hexoside-pentoside (Kaempferol-3-O- hexoside-pentoside) isomer 2 | 29.44 | Hs_Et50M | C27H30O15 | 593.1474 | 593.1512 | 6.39 | 285.0345; 284.0272; 255.0354; 151.0004 | [45,47] |
| 33. | Isorhamnetin-3-O- hexoside | 30.07 | Hs_Et50M, Hs_Et50U | C22H22O12 | 477.1033 | 477.1038 | 1.15 | 447.0863; 315.0404; 314.0410; 271.0492; 151.0006 | fragmentation |
| 34. | Quercetin-3-O- malonylglucoside | 31.75 | Hs_Et50M, Hs_Et50U | C24H22O15 | 549.0917 | 549.0886 | −5.65 | 505.0982; 463.0928; 301.0329; 300.0272; 271.0245; 255.0308; 179.0063; 151.0041 | [45] |
| 35. | Pseudobaptigenin-O- glucoside | 32.93 | HsR_M99, HsR_M70, HsR_M50 | C22H20O10 | 489.1021 * | 489.1038 | 3.94 | 281.0468; 253.0516; 225.0576; 135.0144 | [49] |
| 36. | Ononin | 34.40 | HsR_M99, HsR_M70, HsR_M50 | C22H22O9 | 475.1259 * | 475.1246 | −3.06 | 267.0630; 252.0438 | [48] |
| 37. | Afrormosin-O-glucoside (wistin) | 36.29 | HsR_M99, HsR_M70, HsR_M50 | C23H24O10 | 505.1339 * | 505.1351 | 2.72 | 297.0775; 282.0533; 267.0293; 254.0803; 239.0333; 195.0482 | [50] |
| 38. | Quercetin-O-acetyl- glucoside | 36.57 | Hs_Et50M, Hs_Et50U | C23H22O13 | 505.1002 | 505.0988 | 2.84 | 445.0757; 427.0680; 343.0412; 301.0327 | fragmentation; [49] |
| 39. | Liquiritigenin | 38.14 | HsR_M99, HsR_M70, HsR_M50 | C15H12O4 | 255.0656 | 255.0663 | −2.66 | 135.0086; 119.0492 | [42] |
| 40. | Calycosin | 40.62 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C16H12O5 | 283.0606 | 283.0612 | 2.1 | 268.0387; 224.0413; 211.00402; 195.0403; 184.0519; 148.0168; 135.0100; 120.0214 | [49] |
| 41. | Medicarpin-3-O- glucoside | 40.86 | HsR_M99, HsR_M70, HsR_M50 | C22H24O9 | 477.1411 | 477.1402 | −1.81 | 431.1238; 269.0807; 254.0481; 161.0228; 133.0298; 132.0207 | [51] |
| 42. | Quercetin | 42.78 | Hs_M99, Hs_M70, Hs_M50, Hs_Et50M, Hs_Et50U | C15H10O7 | 301.0362 | 301.0354 | −2.73 | 273.0402; 257.0402; 229.0485; 178.9985; 151.0026; 149.0323; 121.0290; 107.0137 | [52,53] |
| 43. | Luteolin | 43.11 | Hs_Et50M, Hs_Et50U | C15H10O6 | 285.0428 | 285.0405 | −8.17 | 151.0004; 133.0224 | [37,54] |
| 44. | Isoformononetin | 43.30 | HsR_M99, HsR_M70, HsR_M50 | C16H12O4 | 267.0659 | 267.0663 | 1.43 | 252.0393; 223.0393; 208.0530; 195.0461; 135.0315; 132.0214 | [55] |
| 45. | Naringenin | 45.16 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C15H12O5 | 271.0616 | 271.0612 | −1.48 | 227.0837; 177.0212; 151.0034; 119.0478; 107.0177; 93.0314 | [42] |
| 46. | Sissotrin-4′-O-glucoside | 42.84 | HsR_M99, HsR_M70, HsR_M50 | C22H22O10 | 491.1209 * | 491.1195 | −3.14 | 445.1154; 283.0598; 268.0292 | [49] |
| 47. | Pseudobaptigenin | 50.06 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C16H10O5 | 281.0462 | 281.0455 | −2.32 | 253.0499; 251.0360; 223.0396; 195.0449; 135.0093 | [49,56] |
| 48. | Formononetin | 50.95 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C16H12O4 | 267.0654 | 267.0663 | 3.29 | 252.0389; 223.0407; 208.0541; 195.0457; 135.0251; 132.0215 | [49] |
| 49. | Afrormosin | 51.37 | HsR_M99, HsR_M70, HsR_M50 | C17H14O5 | 297.0743 | 297.0768 | 8.54 | 282.0533; 267.0293; 254.0803; 239.0333; 195.0482 | fragmentation |
| 50. | Isoliquiritigenin | 52.03 | Hs_M99, Hs_M70, Hs_M50, HsR_M99, HsR_M70, HsR_M50, Hs_Et50M, Hs_Et50U | C15H12O4 | 255.0656 | 255.0663 | 2.66 | 135.0081; 119.0466; 91.0184 | [42] |
| 51. | Irilone | 52.62 | HsR_M99, HsR_M70, HsR_M50 | C16H10O6 | 297.0385 | 297.0405 | −6.58 | 282.438; 269.0455; 267.0289; 241.0502; | fragmentation; [56] |
| 52. | Medicarpin | 54.13 | HsR_M99, HsR_M70, HsR_M50 | C16H14O4 | 269.0790 | 269.0819 | 10.86 | 254.0598; 161.0279; 145.0306; 133.0288; 132.0223 | [51] |
| 53. | Biochanin A | 59.06 | HsR_M99, HsR_M70, HsR_M50 | C16H12O5 | 283.0637 | 283.0612 | −8.81 | 268.0381; 240.0419; 239.0377; 211.0410; 224.0489; 240.0419; 195.0441; 183.0440; 163.0036; 151.0054; 135.0097; 132.0208; 109.0303 | [49] |
2.1.1. Isoflavones
2.1.2. Flavonols, Flavones, and Flavanones
2.1.3. Chalcones
2.1.4. Pterocarpans
2.1.5. Xanthones
2.1.6. Phenolic Acids and Other Compounds
2.2. Quantification of Mangiferin and Isomangiferin via RP-LC/PDA
2.3. Antibacterial and Antifungal Activity
2.4. Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Extraction
4.3. LC and LC-MS Analysis
4.3.1. Chemical Reagents
4.3.2. RP-LC/PDA Profiling
4.3.3. RP-LC/DAD/ESI–QToF/MS/MS Analysis
4.4. Antimicrobial Evaluation
4.5. DPPH• Radical Scavenging Assay
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, P.-L.; Wen, J.; Duan, L.; Arslan, E.; Ertuğrul, K.; Chang, Z.-Y. Hedysarum L. (Fabaceae: Hedysareae) Is Not Monophyletic—Evidence from Phylogenetic Analyses Based on Five Nuclear and Five Plastid Sequences. PLoS ONE 2017, 12, e0170596. [Google Scholar] [CrossRef] [PubMed]
- Choi, B.; Ohashi, H. Generic criteria and an infrageneric system for Hedysarum and related genera (Papilionoideae-Leguminosae). Taxon 2003, 52, 567–576. [Google Scholar] [CrossRef]
- Dong, Y.; Tang, D.; Zhang, N.; Li, Y.; Zhang, C.; Li, L.; Li, M. Phytochemicals and biological studies of plants in genus Hedysarum. Chem. Cent. J. 2013, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Ji, J.; Guo, X.; Gou, S.; Chen, X. Syringe Paper-Based Analytical Device for Thiamazole Detection by Hedysarum Polysaccharides-Mediated Silver Nanoparticles. Micromachines 2023, 14, 350. [Google Scholar] [CrossRef] [PubMed]
- Sun, Q.; Gao, F.; Yu, Z.; Tao, Y.; Zhao, S.; Cai, Y. Fermentation quality and chemical composition of shrub silage treated with lactic acid bacteria inoculants and cellulase additives. Anim. Sci. J. 2011, 83, 305–309. [Google Scholar] [CrossRef]
- Yurkevich, O.Y.; Samatadze, T.E.; Selyutina, I.Y.; Romashkina, S.I.; Zoshchuk, S.A.; Amosova, A.V.; Muravenko, O.V. Molecular cytogenetics of Eurasian species of the genus Hedysarum L. (Fabaceae). Plants 2021, 10, 89. [Google Scholar] [CrossRef]
- Li, H.; Dang, X.; Han, Y.; Qi, S.; Meng, Z. Sand-fixing measures improve soil particle distribution and promote soil nutrient accumulation for desert—Yellow River coastal ecotone, China. Ecol. Indic. 2023, 157, 111239. [Google Scholar] [CrossRef]
- Onipchenko, V.G.; Makarov, M.I.; Van Der Maarel, E. Influence of alpine plants on soil nutrient concentrations in a monoculture experiment. Folia Geobot. 2001, 36, 225–241. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Bian, T.; Sun, Y.; Zhang, Z.; Liu, T.; Gao, F.; Wang, Y.; Cao, R.; Xin, E.; et al. Hedysari Radix Praeparata Cum Melle repairs impaired intestinal barrier function and alleviates colitis-associated colorectal cancer via remodeling gut microbiota and metabolism. J. Funct. Foods 2023, 108, 105748. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Y.; Xin, E.; Zhang, Z.; Ma, D.; Liu, T.; Gao, F.; Bian, T.; Sun, Y.; Wang, M.; et al. Network pharmacology and experimental verification reveal the mechanism of Hedysari Radix and Curcumae Rhizoma with the optimal compatibility ratio against colitis-associated colorectal cancer. J. Ethnopharmacol. 2023, 322, 117555. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, J.; Zhang, S.; Si, X.; Bian, T.; Wu, H.; Li, D.; Sun, Y.; Jia, J.; Xin, E.; et al. Comparative study on the gastrointestinal- and immune- regulation functions of Hedysari Radix Paeparata Cum Melle and Astragali Radix Praeparata cum Melle in rats with spleen-qi deficiency, based on fuzzy matter-element analysis. Pharm. Biol. 2022, 60, 1237–1254. [Google Scholar] [CrossRef]
- Tsai, Y.; Lin, M.; Peng, W.; Tseng, C.; Lee, M.; Yang, B.; Chang, W. Comparison of the immunomodulatory effect of TCM formulas containing either Astragali Radix or with this replaced by Hedysari Radix. Nat. Prod. Commun. 2022, 17, 1–11. [Google Scholar] [CrossRef]
- Yang, S.; Xiu, M.; Li, X.; Shi, Y.; Wang, S.; Wan, S.; Han, S.; Yang, D.; Liu, Y.; He, J. The antioxidant effects of Hedysarum polybotrys polysaccharide in extending lifespan and ameliorating aging-related diseases in Drosophila melanogaster. Int. J. Biol. Macromol. 2023, 241, 124609. [Google Scholar] [CrossRef]
- Xu, C.; Chen, Y.; Liu, Z.; Fu, X. Hedysarum polybotrys polysaccharide attenuates renal inflammatory infiltration and fibrosis in diabetic mice by inhibiting the HMGB1/RAGE/TLR4 pathway. Exp. Ther. Med. 2023, 26, 493. [Google Scholar] [CrossRef]
- Huang, S.; Chu, Y.; Chen, X.; Su, K.; Ko, C.; Chi, M.; Chao, J.; Su, S. Herbs for lochia discharge used among postpartum women in Taiwan. J. Ethnopharmacol. 2023, 313, 116552. [Google Scholar] [CrossRef]
- Su, S. Editorial: Herbal medicines in women’s lives. Front. Pharmacol. 2022, 13, 1003241. [Google Scholar] [CrossRef] [PubMed]
- Lobanova, I.E.; Filippova, E.I.; Kukushkina, T.A.; Protsenko, M.A.; Khramova, E.P.; Mazurkova, N.A.; Vysochina, G.I. Comparative Evaluation of the Antiviral Activity of Extracts of Some Higher Plants against Influenza A Virus in vitro. Chem. Sustain. Dev. 2021, 29, 657–664. [Google Scholar] [CrossRef]
- Zhmud, E.; Kuban, I.; Emtseva, M.; Dorogina, O. Comparative analysis of trypsin inhibitor activity in the wet and dry weight of leaves in representatives of Hedysarum L. in the foreststeppe of Western Siberia. BIO Web Conf. 2018, 11, 00052. [Google Scholar] [CrossRef][Green Version]
- Li, Y.J.; Bi, K. RP-HPLC determination and pharmacokinetic study of mangiferin in rat plasma after taking traditional chinese medicinal-preparation: Zhimu decoction. Chromatographia 2003, 57, 767–770. [Google Scholar] [CrossRef]
- Vesnina, A.; Milentyeva, I.; Minina, V.; Kozlova, O.; Asyakina, L. Evaluation of the In Vivo Anti-Atherosclerotic Activity of Quercetin Isolated from the Hairy Roots of Hedysarum neglectum Ledeb. Life 2023, 13, 1706. [Google Scholar] [CrossRef]
- Dyshlyuk, L.; Fotina, N.; Milentyeva, I.; Ivanova, S.; Izgarysheva, N.V.; Golubtsova, Y.V. Antimicrobial and antioxidant activity of Panax ginseng and Hedysarum neglectum root crop extracts. Braz. J. Biol. 2024, 84, e256944. [Google Scholar] [CrossRef]
- Bižanov, G.; Barinova, N.; Jonauskienė, I. Experimental immunology Adjuvant effect of Shilajit and plant extracts on the immune responses to bovine serum albumin in hens. Cent. Eur. J. Immunol. 2012, 37, 91–95. [Google Scholar]
- Xu, J.-F.; Na, M.; Bo, A.; Xiao, H.; A, R.; Zhang, M.-X.; Na, B.; Zhang, C.-H.; Li, M.-H. Variety Textual Research of Mongolian Medicine of “Saradma”. Zhongguo Zhong Yao Za Zhi 2020, 45, 3981–3987. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Ren, C.; Li, L.; Zhao, H.; Liu, K.; Zhuang, M.; Lv, X.; Zhi, X.; Jiang, H.; Chen, Q.; et al. Pharmacological action of Hedysarum polysaccharides: A review. Front. Pharmacol. 2023, 14, 1119224. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Xue, Z.; Yang, X.; Fang, Y.; Zhao, L.; Feng, S. Chromatographic Fingerprint Analysis of Radix Hedysari Using Supercritical Fluid Chromatography Coupled with Diode Array Detector. J. Chromatogr. Sci. 2020, 58, 262–273. [Google Scholar] [CrossRef]
- Mar‘In, A.A.; Kolomiets, N.E. Medicinal Plants and Biologically Active Substances with Antifungal Properties. Fundam. Clin. Med. 2017, 2, 45–55. (In Russian) [Google Scholar] [CrossRef]
- Kotsupiy, O.V.; Lobanova, I.E. Phenolic Compounds in Leaves and Inflorescences of Hedysarum alpinum L. and H. flavescens Regel et Schmalh., Introduced into the Forest-Steppe Zone of Western Siberia. Russ. J. Bioorganic Chem. 2023, 49, 1667–1676. [Google Scholar] [CrossRef]
- Imachueva, D.R.; Silver, F.K.; Zilfikarov, I.N. Quantitative Determination of The Amount of Xanthones in Conclusions of Mangiferin in The Above-Ground Organs of Species of The Genus Hedysarum L. By Uv-Spectrophotometry. Chem. Plant Raw Mater. 2020, 3, 179–186. (In Russian) [Google Scholar] [CrossRef]
- Duan, L.; Wen, J.; Yang, X.; Liu, P.-L.; Arslan, E.; Ertuğrul, K.; Chang, Z.-Y. Phylogeny of Hedysarum and tribe Hedysareae (Leguminosae: Papilionoideae) inferred from sequence data of ITS, matK, trnL-F and psbA-trnH. Taxon 2015, 64, 49–64. [Google Scholar] [CrossRef]
- Pavlov, N.V. Flora Kazahstana; Izdatel’stvo Akademii nauk Kazahskoj SSR: Alma-Ata, Kazakhstan, 1961; Volume 2, pp. 420–441. [Google Scholar]
- Keleke, A.; Ibragimova, L.; Zhumashova, G.; Sabitova, A.; Sultanova, E.; Sakipova, Z. Kazakh Plant Species of The Genus Hedysarum L.: Distribution, Botanical Description and Profile of Pharmacological Activity. Farm. Kaz. 2023, 3, 297–306. [Google Scholar] [CrossRef]
- Imachueva, D.R.; Serebryanaya, F.K.; Machs, E.M.; Kotseruba, V.V. Use of Sequencing Methods for Species Identification Exemplified by Phylogenetic Relationships within Genus Hedysarum L. Pharm. Pharmacol. 2021, 9, 506–518. [Google Scholar] [CrossRef]
- Cao, J.N.; Han, C.R.; Yang, Y.C. Characterization of the complete chloroplast genome of Hedysarum polybotrys var. alaschanicum (Fabaceae) and its phylogeny. Mitochondrial DNA B Resour. 2021, 6, 3312–3313. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Wang, W.; Zhao, Y.; Chen, H.; Liang, H.; Zhang, Q. Chemotaxonomy studies on the genus Hedysarum. Biochem. Syst. Ecol. 2019, 86, 103902. [Google Scholar] [CrossRef]
- Liu, Y.; Hai, L.Q.; Zhao, Y.Y.; Zhang, Q.Y. Studies on the chemical constituents of Hedysarum semenovii. China Pharm. 2008, 22, 568–569. [Google Scholar]
- Liu, Y.; Hai, L.Q.; Zhao, Y.Y.; Zhang, Q.Y. Isoflavonoids from Hedysarum semenovii. J. Chin. Pharm. Sci. 2009, 44, 1533–1535. [Google Scholar]
- Human Metabolome Database (HMDB). Available online: https://hmdb.ca (accessed on 2 February 2024).
- Ammar, S.; Noui, H.; Djamel, S.; Madani, S.; Maggi, F.; Bruno, M.; Romano, D.; Canale, A.; Pavela, R.; Benelli, G. Essential oils from three Algerian medicinal plants (Artemisia campestris, Pulicaria arabica, and Saccocalyx satureioides) as new botanical insecticides? Environ. Sci. Pollut. Res. 2020, 27, 26594–26604. [Google Scholar] [CrossRef]
- Masike, K.; Mhlongo, M.I.; Mudau, S.P.; Nobela, O.; Ncube, E.N.; Tugizimana, F.; George, M.J.; Madala, N.E. Highlighting mass spectrometric fragmentation differences and similarities between hydroxycinnamoyl-quinic acids and hydroxycinnamoyl-isocitric acids. Chem. Cent. J. 2017, 11, 29. [Google Scholar] [CrossRef]
- Shan, L.; Wu, Y.; Yuan, L.; Zhang, Y.; Xu, Y.; Li, Y. Rapid screening of Chemical constituents in Rhizoma anemarrhenae by UPLC-Q-TOF/MS combined with data postprocessing techniques. Evid. Based Complement. Alternat. Med. 2017, 1, 4032820. [Google Scholar] [CrossRef]
- Serebryanaya, F. Pharmacotechnological Investigations of the Hedysarum caucasicum from the Northern Caucasus. Int. J. Pharmacogn. Chin. Med. 2021, 5, 1–10. [Google Scholar] [CrossRef]
- Chiriac, E.R.; Chiţescu, C.L.; Borda, D.; Lupoae, M.; Gird, C.E.; Geană, E.I.; Blaga, G.-V.; Boscencu, R. Comparison of the polyphenolic profile of Medicago sativa L. and Trifolium pratense L. sprouts in different germination stages using the UHPLC-Q. exactive hybrid quadrupole orbitrap high-resolution mass spectrometry. Molecules 2020, 25, 2321. [Google Scholar] [CrossRef]
- Murai, Y.; Nakamura, K. Phenolic Compounds from Hedysarum vicioides (Fabaceae) in Japan. Bull. Natl. Mus. Nat. Sci. Ser. B Bot. 2022, 48, 95–100. [Google Scholar] [CrossRef]
- Boso, S.; Gago, P.; Santiago, J.L.; Álvarez-Acero, I.; Martinez Bartolomé, M.A.; Martínez, M.C. Polyphenols in the Waste Water Produced during the Hydrodistillation of ‘Narcea Roses’ Cultivated in the Cibea River Valley (Northern Spain). Horticulturae 2022, 8, 376. [Google Scholar] [CrossRef]
- Tava, A.; Biazzi, E.; Ronga, D.; Mella, M.; Doria, F.; D’addabbo, T.; Candido, V.; Avato, P. Chemical identification of specialized metabolites from sulla (Hedysarum coronarium L.) collected in southern Italy. Molecules 2021, 26, 4606. [Google Scholar] [CrossRef] [PubMed]
- Song, X.C.; Canellas, E.; Dreolin, N.; Nerin, C.; Goshawk, J. Discovery and characterization of phenolic compounds in bearberry (Arctostaphylos uva-ursi) leaves using liquid chromatography–ion mobility–high-resolution mass spectrometry. J. Agric. Food Chem. 2021, 69, 10856–10868. [Google Scholar] [CrossRef] [PubMed]
- Allambergenova, Z.; Kasela, M.; Adamczuk, G.; Humeniuk, E.; Iwan, M.; Świątek, Ł.; Boguszewska, A.; Rajtar, B.; Józefczyk, A.; Baj, T.; et al. Phytochemical Profile and Biological Activity of the Ethanolic Extract from the Aerial Part of Crocus alatavicus Regel & Semen Growing Wildly in Southern Kazakhstan. Molecules 2022, 27, 3468. [Google Scholar] [CrossRef]
- Maciejewska-Turska, M.; Pecio, Ł.; Zgórka, G. Isolation of Mirificin and Other Bioactive Isoflavone Glycosides from the Kudzu Root Lyophilisate Using Centrifugal Partition and Flash Chromatographic Techniques. Molecules 2022, 27, 6227. [Google Scholar] [CrossRef]
- Maciejewska-Turska, M.; Zgórka, G. In-depth phytochemical and biological studies on potential AChE inhibitors in red and zigzag clover dry extracts using reversed–phase liquid chromatography (RP-LC) coupled with photodiode array (PDA) and electron spray ionization-quadrupole/time of flight-mass spectrometric (ESI-QToF/MS-MS) detection and thin-layer chromatography-bioautography. Food Chem. 2022, 375, 131846. [Google Scholar] [CrossRef]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. PubChem Compound Summary for CID 10095770, Wistin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Wistin (accessed on 23 November 2024).
- Wang, H.Y.; Li, T.; Ji, R.; Xu, F.; Liu, G.X.; Li, Y.L.; Shang, M.-Y.; Cai, S.-Q. Metabolites of medicarpin and their distributions in rats. Molecules 2019, 24, 1966. [Google Scholar] [CrossRef]
- Zheleva-Dimitrova, D.; Petrova, A.; Zengin, G.; Sinan, K.I.; Balabanova, V.; Joubert, O.; Zidorn, C.; Voynikov, Y.; Simeonova, R.; Gevrenova, R. Metabolite profiling and bioactivity of Cicerbita alpina (L.) Wallr. (Asteraceae, Cichorieae). Plants 2023, 12, 1009. [Google Scholar] [CrossRef]
- Pilařová, V.; Kuda, L.; Vlčková, H.K.; Nováková, L.; Gupta, S.; Kulkarni, M.; Švec, F.; Van Staden, J.; Doležal, K. Carbon dioxide expanded liquid: An effective solvent for the extraction of quercetin from South African medicinal plants. Plant Methods 2022, 18, 87. [Google Scholar] [CrossRef]
- Yuan, T.; Guo, X.F.; Shao, S.Y.; An, R.M.; Wang, J.; Sun, J. Characterization and identification of flavonoids from Bambusa chungii leaves extract by UPLC-ESI-Q-TOF-MS/MS. Acta Chromatogr. 2021, 33, 281–294. [Google Scholar] [CrossRef]
- PubChem. Bethesda (MD): National Library of Medicine (US), National Center for Biotechnology Information; 2004. PubChem Compound Summary for CID 3764, Isoformononetin. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Isoformononetin (accessed on 23 November 2024).
- Polasek, J.; Queiroz, E.F.; Hostettmann, K. On-line identification of phenolic compounds of Trifolium species using HPLC-UV-MS and post-column UV derivatisation. Phytochem. Anal. 2007, 18, 13–23. [Google Scholar] [CrossRef]
- Troalen, L.G.; Phillips, A.S.; Peggie, D.A.; Barran, P.E.; Hulme, A.N. Historical textile dyeing with Genista tinctoria L.: A comprehensive study by UPLC-MS/MS analysis. Anal. Methods 2014, 6, 8915–8923. [Google Scholar] [CrossRef]
- Okińczyc, P.; Paluch, E.; Franiczek, R.; Widelski, J.; Wojtanowski, K.K.; Mroczek, T.; Krzyżanowska, B.; Skalicka-Woźniak, K.; Sroka, Z. Antimicrobial activity of Apis mellifera L. and Trigona sp. propolis from Nepal and its phytochemical analysis. BioMed. Pharmacother. 2020, 129, 110435. [Google Scholar] [CrossRef] [PubMed]
- Andrade, J.M.; dos SPassos, C.; Dresch, R.R.; Kieling-Rubio, M.A.; Moreno, P.R.H.; Henriques, A.T. Chemical analysis, antioxidant, antichemotactic and monoamine oxidase inhibition effects of some pteridophytes from Brazil. Pharmacogn. Mag. 2014, 10 (Suppl. S1), S100–S109. [Google Scholar] [CrossRef] [PubMed]
- Trevisan, M.T.S.; de Almeida, R.F.; Soto, G.; de Melo Virginio Filho, E.; Ulrich, C.M.; Owen, R.W. Quantitation by HPLC-UV of Mangiferin and Isomangiferin in Coffee (Coffea arabica) Leaves from Brazil and Costa Rica after Solvent Extraction and Infusion. J. Braz. Chem. Soc. 2016, 27, 2283–2291. [Google Scholar] [CrossRef]
- Beelders, T.; De Beer, D.; Stander, M.A.; Joubert, E. Comprehensive phenolic profiling of Cyclopia genistoides (L.) Vent. by LC-DAD-MS and-MS/MS reveals novel xanthone and benzophenone constituents. Molecules 2014, 19, 11760–11790. [Google Scholar] [CrossRef]
- Lang, Y.; Gao, N.; Zang, Z.; Meng, X.; Lin, Y.; Yang, S.; Yang, Y.; Jin, Z.; Li, B. Classification and antioxidant assays of polyphenols: A review. J. Future Foods 2023, 4, 193–204. [Google Scholar] [CrossRef]
- Deepika, N.; Maurya, P.K. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Gendrisch, F.; Esser, P.R.; Schempp, C.M.; Wölfle, U. Luteolin as a modulator of skin aging and inflammation. Biofactors 2021, 47, 170–180. [Google Scholar] [CrossRef]
- Seelinger, G.; Merfort, I.; Schempp, C. Anti-Oxidant, Anti-Inflammatory and Anti-Allergic activities of luteolin. Planta Med. 2008, 74, 1667–1677. [Google Scholar] [CrossRef]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and anti-inflammatory activities of quercetin and its derivatives. J. Funct. Foods 2017, 40, 68–75. [Google Scholar] [CrossRef]
- Parveen, S.; Bhat, I.U.H.; Bhat, R. Kaempferol and its derivatives: Biological activities and therapeutic potential. Asian Pac. J. Trop. Biomed. 2023, 13, 411–420. [Google Scholar] [CrossRef]
- Shahbaz, M.; Imran, M.; Alsagaby, S.A.; Naeem, H.; Abdulmonem, W.A.; Hussain, M.; Abdelgawad, M.A.; El-Ghorab, A.H.; Ghoneim, M.M.; El-Sherbiny, M.; et al. Anticancer, antioxidant, ameliorative and therapeutic properties of kaempferol. Int. J. Food Prop. 2023, 26, 1140–1166. [Google Scholar] [CrossRef]
- Zheng, M.S.; Lu, Z.Y. Antiviral effect of mangiferin and isomangiferin on herpes simplex virus. Chin. Med. J. 1990, 103, 160–165. [Google Scholar] [PubMed]
- Singh, S.; Kumar, Y.; Kumar, S.S.; Sharma, V.; Dua, K.; Samad, A. Antimicrobial evaluation of mangiferin analogues. Indian J. Pharm. Sci. 2009, 71, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Turkar, M.K.; Sahu, R.; Jain, D. A Comprehensive Review on the Synthesis of Mangiferin Derivatives and their Multiple Biological Activities. Curr. Org. Chem. 2024, 29, 921–935. [Google Scholar] [CrossRef]
- Deng, M.; Chen, H.; Long, J.; Song, J.; Xie, L.; Li, X. Calycosin: A Review of its Pharmacological Effects and Application Prospects. Expert Rev. Anti-Infect. Ther. 2021, 19, 911–925. [Google Scholar] [CrossRef]
- Tay, K.-C.; Tan, L.T.-H.; Chan, C.K.; Hong, S.L.; Chan, K.-G.; Yap, W.H.; Pusparajah, P.; Lee, L.-H.; Goh, B.-H. Formononetin: A review of its Anticancer Potentials and Mechanisms. Front. Pharmacol. 2019, 10, 820. [Google Scholar] [CrossRef]
- Tyagi, A.M.; Gautam, A.K.; Kumar, A.; Srivastava, K.; Bhargavan, B.; Trivedi, R.; Saravanan, S.; Yadav, D.K.; Singh, N.; Pollet, C.; et al. Medicarpin inhibits osteoclastogenesis and has nonestrogenic bone conserving effect in ovariectomized mice. Mol. Cell. Endocrinol. 2010, 325, 101–109. [Google Scholar] [CrossRef]
- Martínez-Sotres, C.; López-Albarrán, P.; Cruz-De-León, J.; García-Moreno, T.; Rutiaga-Quiñones, J.G.; Vázquez-Marrufo, G.; Tamariz-Mascarúa, J.; Herrera-Bucio, R. Medicarpin, an antifungal compound identified in hexane extract of Dalbergia congestiflora Pittier heartwood. Int. Biodeterior. Biodegrad. 2012, 69, 38–40. [Google Scholar] [CrossRef]
- Williams, D.; Perry, D.; Carraway, J.; Simpson, S.; Uwamariya, P.; Christian, O.E. Antigonococcal activity of (+)-Medicarpin. ACS Omega 2021, 6, 15274–15278. [Google Scholar] [CrossRef]
- Chern, C.-M.; Lu, C.-K.; Liou, K.-T.; Wang, Y.-H.; Tsai, K.-C.; Chang, C.-L.; Chang, C.-C.; Shen, Y.-C. Medicarpin isolated from Radix Hedysari ameliorates brain injury in a murine model of cerebral ischemia. J. Food Drug Anal. 2021, 29, 581–605. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.W.; Zhao, R.J.; Park, S.J.; Lee, J.R.; Cho, I.J.; Yang, C.H.; Kim, S.G.; Kim, S.C. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-κB-dependent iNOS and proinflammatory cytokines production. Br. J. Pharmacol. 2008, 154, 165–173. [Google Scholar] [CrossRef] [PubMed]
- Gaur, R.; Kumar, S.; Trivedi, P.; Bhakuni, R.S.; Bawankule, D.U.; Pal, A.; Shanker, K. Liquiritigenin derivatives and their hepatotoprotective activity. Nat. Prod. Commun. 2010, 5, 1243–1246. [Google Scholar] [CrossRef] [PubMed]
- Kikuzaki, H.; Hisamoto, M.; Hirose, K.; Akiyama, K.; Taniguchi, H. Antioxidant properties of ferulic acid and its related compounds. J. Agric. Food Chem. 2002, 50, 2161–2168. [Google Scholar] [CrossRef]
- Zhang, X.-X.; Zhao, D.-S.; Wang, J.; Zhou, H.; Wang, L.; Mao, J.-L.; He, J.-X. The treatment of cardiovascular diseases: A review of ferulic acid and its derivatives. Die Pharm. 2021, 76, 55–60. [Google Scholar] [CrossRef]
- Sung, J.-H.; Gim, S.-A.; Koh, P.-O. Ferulic acid attenuates the cerebral ischemic injury-induced decrease in peroxiredoxin-2 and thioredoxin expression. Neurosci. Lett. 2014, 566, 88–92. [Google Scholar] [CrossRef]
- Borah, H.J.; Borah, A.; Yadav, A.; Hazarika, S. Extraction of malic acid from Dillenia indica in organic solvents and its antimicrobial activity. Sep. Sci. Technol. 2022, 58, 314–325. [Google Scholar] [CrossRef]
- Benali, T.; Bakrim, S.; Ghchime, R.; Benkhaira, N.; Omari, N.E.; Balahbib, A.; Taha, D.; Zengin, G.; Hasan, M.M.; Bibi, S.; et al. Pharmacological insights into the multifaceted biological properties of quinic acid. Biotechnol. Genet. Eng. Rev. 2022, 40, 3408–3437. [Google Scholar] [CrossRef]
- Nangare, S.; Vispute, Y.; Tade, R.; Dugam, S.; Patil, P. Pharmaceutical applications of citric acid. Future J. Pharm. Sci. 2021, 7, 54. [Google Scholar] [CrossRef]
- Morgunov, I.G.; Kamzolova, S.V.; Karpukhina, O.V.; Bokieva, S.B.; Inozemtsev, A.N. Biosynthesis of isocitric acid in repeated-batch culture and testing of its stress-protective activity. Appl. Microbiol. Biotechnol. 2019, 103, 3549–3558. [Google Scholar] [CrossRef] [PubMed]
- METLIN: A Metabolite Mass Spectral Database. Available online: https://metlin.scripps.edu (accessed on 23 November 2024).
- European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Determination of Minimum Inhibitory Concentrations (MICs) of Antibacterial Agents by Broth Dilution. Clin. Microbiol. Infect. 2003, 9, 9–15. [Google Scholar] [CrossRef]
- Zhumakanova, B.S.; Korona-Głowniak, I.; Skalicka-Woźniak, K.; Ludwiczuk, A.; Baj, T.; Wojtanowski, K.K.; Józefczyk, A.; Zhaparkulova, K.A.; Sakipova, Z.B.; Malm, A. Phytochemical Fingerprinting and In Vitro Antimicrobial and Antioxidant Activity of the Aerial Parts of Thymus marschallianus Willd. and Thymus seravschanicus Klokov Growing Widely in Southern Kazakhstan. Molecules 2021, 26, 3193. [Google Scholar] [CrossRef]
- Scherer, R.; Godoy, H.T. Antioxidant activity index (AAI) by the 2,2-diphenyl-1-picrylhydrazyl method. Food Chem. 2008, 112, 654–658. [Google Scholar] [CrossRef]
| Part of the Plant | Extraction Solvent | Designated Abbreviation |
|---|---|---|
| Leaves | Methanol 99.8% | Hs_M99 |
| Methanol 70% | Hs_M70 | |
| Methanol 50% | Hs_M50 | |
| Ethanol 50% (maceration) | Hs_Et50M | |
| Ethanol 50% (ultrasonification) | Hs_Et50U | |
| Roots | Methanol 99.8% | HsR_M99 |
| Methanol 70% | HsR_M70 | |
| Methanol 50% | HsR_M50 |
| Compound | Extract Number * [mg/g Extract] and (SD; RSD) | ||||
|---|---|---|---|---|---|
| Hs_M99 | Hs_M70 | Hs_M50 | Hs_Et50M | Hs_Et50U | |
| mangiferin | 1.52 (0.018; 1.235) | 1.89 0.062; 3.313) | 2.00 (0.005; 0.259) | 4.12 (0.017; 0.425) | 5.46 (0.014; 0.256) |
| isomangiferin | 0.19 (0.004; 2.663) | 0.10 (0.003; 3.331) | 0.18 (0.002; 11.298) | 0.59 (0.024; 4.178) | 0.61 (0.004; 0.789) |
| Reference Microorganism | Hs_M99 | Hs_M70 | Hs_M50 | Hs_Et50M | Hs_Et50U | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | ||
| G(+) | Staphylococcus epidermidis ATCC 12228 | 0.5 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | 0.5 | 1 | 2 | 0.5 | 1 | 2 |
| Staphylococcus aureus ATCC 29213 | 0.5 | 1 | 2 | 4 | 4 | 1 | 2 | 4 | 2 | 1 | 2 | 2 | 1 | 2 | 2 | |
| Enterococcus faecalis ATCC 29212 | 2 | 8 | 4 | 16 | 16 | 1 | 16 | 16 | 1 | 2 | 4 | 2 | 2 | 8 | 4 | |
| Bacillus cereus ATCC 10876 | 2 | 2 | 1 | 4 | 4 | 1 | 4 | 4 | 1 | 1 | 2 | 2 | 2 | 4 | 2 | |
| G(−) | Escherichia coli ATCC 25922 | 8 | 8 | 1 | 8 | 8 | 1 | 8 | 8 | 1 | 4 | 4 | 1 | 8 | 8 | 1 |
| Pseudomonas aeruginosa ATCC 27853 | 2 | 4 | 2 | 2 | 4 | 2 | 2 | 2 | 1 | 1 | 2 | 1 | 1 | 2 | 2 | |
| MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | ||
| Y | Candida albicans ATCC 10231 | 4 | 8 | 2 | 8 | 8 | 1 | 4 | 8 | 2 | 8 | 8 | 1 | 4 | 8 | 2 |
| Candida glabrata ATCC 90030 | 8 | 16 | 2 | 8 | 16 | 2 | 4 | 8 | 2 | 8 | 16 | 2 | 8 | 8 | 1 | |
| Reference Microorganism | HsR_M99 | HsR_M70 | HsR_M50 | |||||||
|---|---|---|---|---|---|---|---|---|---|---|
| MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | MIC | MBC | MBC/MIC | ||
| G(+) | Staphylococcus epidermidis ATCC 12228 | 1 | 4 | 4 | 2 | 8 | 2 | 4 | 8 | 2 |
| Staphylococcus aureus ATCC 29213 | 4 | 8 | 2 | 8 | 8 | 1 | 16 | 16 | 1 | |
| Enterococcus faecalis ATCC 29212 | 16 | >16 | nd | 8 | >16 | nd | 16 | >16 | nd | |
| Bacillus cereus ATCC 10876 | 4 | 4 | 1 | 4 | 8 | 2 | 8 | 8 | 1 | |
| G(−) | Escherichia coli ATCC 25922 | 16 | 16 | 1 | 16 | 16 | 1 | 16 | 16 | 1 |
| Pseudomonas aeruginosa ATCC 27853 | 8 | 8 | 1 | 8 | 8 | 1 | 8 | 8 | 1 | |
| MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | MIC | MFC | MFC/MIC | ||
| Y | Candida albicans ATCC 10231 | 4 | 8 | 2 | 4 | 8 | 2 | 4 | 8 | 2 |
| Candida glabrata ATCC 90030 | 8 | 16 | 2 | 8 | 16 | 2 | 8 | 16 | 2 | |
| Reference Strains | Kruskal–Wallis Test | Dunn’s Multiple-Comparisons Test | |
|---|---|---|---|
| H (7) | p | ||
| S. epidermidis ATCC 12228 | 18.01 | 0.012 | nd |
| S. aureus ATCC 29213 | 21.63 | 0.003 | Hs_M99 vs. HsR_M50 |
| E. faecalis ATCC 29212 | 20.08 | 0.005 | nd |
| B. cereus ATCC 10879 | 18.27 | 0.011 | Hs_Et50M vs. HsR_M50 |
| E. coli ATCC 25922 | 20.18 | 0.005 | nd |
| P. aeruginosa ATCC 27853 | 19.68 | 0.006 | nd |
| C. albicans ATCC 10231 | 12.99 | 0.072 | - |
| C. glabrata ATCC 90030 | 10.43 | 0.165 | - |
| Hs_M99 | Hs_M70 | Hs_M50 | Hs_Et50M | Hs_Et50U | |
|---|---|---|---|---|---|
| EC50, µg/mL | 48.3 ± 6.27 | 84.6 ± 8.4 | 206.6 ± 30.4 | 36.7 ± 2.35 | 50.9 ± 8.81 |
| AAI | 1.6 ± 0.2 | 0.90 ± 0.09 | 0.37 ± 0.05 | 2.07 ± 0.13 | 1.49 ± 0.26 |
| Reference Substance | Regression Equation | R2 | Linearity Range (mg/mL) | LOD (μg/mL) | LOQ (μg/mL) | Intraday Precision (n = 3) (%) | Interday Precision (n = 3) (%) |
|---|---|---|---|---|---|---|---|
| mangiferin | y = 4 × 107x + 128,265 | 0.9993 | 0.0125–0.2 | 1.042 | 3.125 | 1.32 | 0.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keleke, A.; Maciejewska-Turska, M.; Kasela, M.; Baj, T.; Ibragimova, L.; Sakipova, Z.; Sermukhamedova, O.; Ludwiczuk, A. Phytochemical Composition and Antimicrobial and Antioxidant Activity of Hedysarum semenowii (Fabaceae). Molecules 2025, 30, 4503. https://doi.org/10.3390/molecules30234503
Keleke A, Maciejewska-Turska M, Kasela M, Baj T, Ibragimova L, Sakipova Z, Sermukhamedova O, Ludwiczuk A. Phytochemical Composition and Antimicrobial and Antioxidant Activity of Hedysarum semenowii (Fabaceae). Molecules. 2025; 30(23):4503. https://doi.org/10.3390/molecules30234503
Chicago/Turabian StyleKeleke, Anel, Magdalena Maciejewska-Turska, Martyna Kasela, Tomasz Baj, Liliya Ibragimova, Zuriyadda Sakipova, Olga Sermukhamedova, and Agnieszka Ludwiczuk. 2025. "Phytochemical Composition and Antimicrobial and Antioxidant Activity of Hedysarum semenowii (Fabaceae)" Molecules 30, no. 23: 4503. https://doi.org/10.3390/molecules30234503
APA StyleKeleke, A., Maciejewska-Turska, M., Kasela, M., Baj, T., Ibragimova, L., Sakipova, Z., Sermukhamedova, O., & Ludwiczuk, A. (2025). Phytochemical Composition and Antimicrobial and Antioxidant Activity of Hedysarum semenowii (Fabaceae). Molecules, 30(23), 4503. https://doi.org/10.3390/molecules30234503

