Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan
Abstract
1. Introduction
2. Results
2.1. Qualitative and Quantitative Composition of G. aleppicum Extract
2.2. Total Polyphenol Content, Total Flavonoid Content, and Antioxidant Activity
2.3. Antibacterial and Antifungal Activity
2.4. Antiviral Activity
2.5. Anticancer Activity
3. Discussion
4. Materials and Methods
4.1. Plant Collection and Extract Preparation
4.2. The HPLC-ESI-QTOF-MS/MS Fingerprinting
4.3. RP-HPLC/DAD Analysis
4.4. Total Polyphenol Content and Total Flavonoid Content Evaluation
4.5. Antioxidant Activity Evaluation
4.6. Microbroth Dilution Method
4.7. Time–Kill Assay
4.8. Antiviral Activity Evaluation
4.9. Anticancer Activity Evaluation
5. Conclusions
6. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bunse, M.; Mailänder, L.K.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Evaluation of Geum urbanum L. extracts with respect to their antimicrobial potential. Chem. Biodivers. 2022, 19, e202100850. [Google Scholar] [CrossRef]
- Ham, S.H.; Yoon, A.R.; Oh, H.E.; Park, Y.G. Plant growth-promoting microorganism Pseudarthrobacter sp. NIBRBAC000502770 enhances the growth and flavonoid content of Geum aleppicum. Microorganisms 2022, 10, 1241. [Google Scholar] [CrossRef]
- Mo, X.; Zhou, Y.; Zhan, M.; Zhang, Y.; Liu, J.; Quang, H.; Dong, L. A Review of the traditional uses, phytochemistry, pharmacology and toxicity for the genus Geum (Rosaceae). Fitoterapia 2025, 180, 106333. [Google Scholar] [CrossRef]
- Bunse, M.; Lorenz, P.; Stintzing, F.C.; Kammerer, D.R. Insight into the secondary metabolites of Geum urbanum L. and Geum rivale L. seeds (Rosaceae). Plants 2021, 10, 1219. [Google Scholar] [CrossRef]
- Neshati, V.; Mollazadeh, S.; Sedigheh, B.; Fazeli, S.A.S.; Gargari, M.K.; Heidarianpour, A.; Kerachian, M.A. Cardiogenic effects of characterized Geum urbanum extracts on adipose-derived human mesenchymal stem cells. Biochem. Cell Biol. 2018, 96, 610–618. [Google Scholar] [CrossRef]
- Chen, H.; Cheng, L.; Lin, X.; Li, X.; Zhou, X.; Chen, Z.; Lau, W.B.; Xiao, Y.; Yang, F.; Ma, L. Reconstitution of coronary vasculature by an active fraction of Geum japonicum in ischemic hearts. Sci. Rep. 2014, 4, 3962. [Google Scholar] [CrossRef]
- Xie, Y.-W.; Xu, H.-X.; Dong, H.; Fiscus, R.R.; But, P.P.H. Role of nitric oxide in the vasorelaxant and hypotensive effects of extracts and purified tannins from Geum japonicum. J. Ethnopharmacol. 2007, 109, 128–133. [Google Scholar] [CrossRef]
- Ou, B.; Tao, W.; Yang, S.; Feng, J.; Wang, J.; Yang, T.; Wu, H.; Huang, Y.; Tan, L.; Huang, W.; et al. The antiapoptosis effect of Geum japonicum Thunb. var. Chinense extracts on cerebral ischemia reperfusion injury via PI3K/Akt pathway. Evid. Based Complement. Alternat. Med. 2018, 2018, 7290170. [Google Scholar] [CrossRef]
- Lim, D.W.; Han, T.; Um, M.Y.; Yoon, M.; Kim, T.-E.; Kim, Y.T.; Han, D.; Lee, J.; Lee, C.H. Administration of asian herb bennet (Geum japonicum) extract reverses depressive-like behaviors in mouse model of depression induced by corticosterone. Nutrients 2019, 11, 2841. [Google Scholar] [CrossRef]
- Shi, X.; Li, C.; Zhao, L.; Si, M.; Zhu, L.; Xin, K.; Chen, C.; Wang, Y.; Shen, X.; Zhang, L. Rhizobium gei Sp. Nov., a bacterial endophyte of Geum aleppicum. Int. J. Syst. Evol. Microbiol. 2016, 66, 4282–4288. [Google Scholar] [CrossRef]
- Zhang, L.; Wei, L.; Zhu, L.; Li, C.; Wang, Y.; Shen, X. Pseudoxanthomonas gei Sp. Nov., a novel endophytic bacterium isolated from the stem of Geum aleppicum. Antonie Van Leeuwenhoek 2014, 105, 653–661. [Google Scholar] [CrossRef]
- Zhu, L.; Si, M.; Li, C.; Xin, K.; Chen, C.; Shi, X.; Huang, R.; Zhao, L.; Shen, X.; Zhang, L. Sphingomonas gei Sp. Nov., isolated from roots of Geum aleppicum. Int. J. Syst. Evol. Microbiol. 2015, 65, 1160–1166. [Google Scholar] [CrossRef]
- Zhu, L.; Long, M.; Si, M.; Wei, L.; Li, C.; Zhao, L.; Shen, X.; Wang, Y.; Zhang, L. Asticcacaulis endophyticus Sp. Nov., a prosthecate bacterium isolated from the root of Geum aleppicum. Int. J. Syst. Evol. Microbiol. 2014, 64, 3964–3969. [Google Scholar] [CrossRef]
- Kozyra, S.A.; Gontova, T.M.; Stepanova, S.I.; Gaponenko, V.P.; Mastaler, V.V.; Romanova, S.V. Comparative study of the elemental composition in raw materials of plants of genus Geum, L. Farm. Zh. 2021, 70–77. [Google Scholar] [CrossRef]
- Kim, M.-J.; Yang, H.-G.; Park, S.-N. Antioxidative activities and antiaging effects of Geum aleppicum Jacq. Extracts. J. Soc. Cosmet. Sci. Korea 2011, 37, 191–198. [Google Scholar] [CrossRef]
- Kashchenko, N.I.; Olennikov, D.N.; Chirikova, N.K. Metabolites of Geum aleppicum and Sibbaldianthe bifurca: Diversity and α-glucosidase inhibitory potential. Metabolites 2023, 13, 689. [Google Scholar] [CrossRef]
- Kim, J.; Choi, C.H.; Lee, A.Y.; Lee, S. Antioxidant, anticancer, and neuroprotective activities and phytochemical analysis of germinated shoots. J. Food Biochem. 2023, 2023, 2074678. [Google Scholar] [CrossRef]
- Shagjjav, O.; Yim, J.H. Antimicrobial activity of some Mongolian plants. Mong. J. Biol. Sci. 2023, 21, 3–13. [Google Scholar] [CrossRef]
- Choi, Y.-H.; Kim, M.-J.; Lee, H.-S.; Hu, C.-X.; Kwak, S.-S. Antioxidants in leaves of Rosa rugosa. Korean J. Pharmacogn. 1997, 28, 179–184. [Google Scholar]
- Cheng, X.-R.; Jin, H.-Z.; Qin, J.-J.; Fu, J.-J.; Zhang, W.-D. Chemical constituents of plants from the genus Geum. Chem. Biodivers. 2011, 8, 203–222. [Google Scholar] [CrossRef]
- Owczarek, A.; Gudej, J.; Olszewska, M.A. Antioxidant Activity of Geum rivale L. and Geum urbanum L. Acta Pol. Pharm. 2015, 72, 1239–1244. Available online: https://www.ptfarm.pl/pub/File/Acta_Poloniae/2015/6/1239.pdf (accessed on 23 September 2025).
- Orlova, A.; Kysil, E.; Tsvetkova, E.; Meshalkina, D.; Whaley, A.; Whaley, A.O.; Laub, A.; Francioso, A.; Babich, O.; Wessjohann, L.A.; et al. Phytochemical characterization of water avens (Geum rivale L.) extracts: Structure assignment and biological activity of the major phenolic constituents. Plants 2022, 11, 2859. [Google Scholar] [CrossRef]
- Zaharieva, M.M.; Dimitrova, L.L.; Philipov, S.; Nikolova, I.; Vilhelmova, N.; Grozdanov, P.; Nikolova, N.; Popova, M.; Bankova, V.; Konstantinov, S.M.; et al. In vitro antineoplastic and antiviral activity and in vivo toxicity of Geum urbanum L. extracts. Molecules 2022, 27, 245. [Google Scholar] [CrossRef]
- Orlova, A.A.; Whaley, A.K.; Osipova, A.O.; Kysil, E.V.; Filippova, N.V.; Polyakov, N.E.; Zhuravskii, M.I.; Shults, E.E.; Fedoroska, O.V.; Peshkova, S.N. Two new flavonol-bis-3,7-glucuronides from Geum rivale L. Phytochem. Lett. 2021, 42, 41–44. [Google Scholar] [CrossRef]
- Lee, Y.Y.; Akram, A.W.; Kim, Y.-H.; Irfan, M.; Kim, S.D.; Saba, E.; Kim, T.W.; Yun, B.-S.; Rhee, M.H. Geum japonicum Thunb. exhibits anti-platelet activity via the regulation of cyclic guanosine monophosphate. Front. Pharmacol. 2025, 16, 1538417. [Google Scholar] [CrossRef]
- Geran, R.S.; Greenberg, N.H.; Macdonald, M.M.; Schumacher, A.M.; Abbott, B.J. Protocols for screening chemical agents and natural products against animal tumors and other biological systems. Cancer Chemotherapy Rep. 1972, 13, 1–87. [Google Scholar]
- Łaska, G.; Sieniawska, E.; Świątek, Ł.; Zjawiony, J.; Khan, S.; Boguszewska, A.; Stocki, M.; Angielczyk, M.; Polz-Dacewicz, M. Phytochemistry and biological activities of Polemonium caeruleum L. Phytochem. Lett. 2019, 30, 314–323. [Google Scholar] [CrossRef]
- Golmei, P.; Kasna, S.; Roy, K.P.; Kumar, S. A Review on pharmacological advancement of ellagic acid. J. Pharmacol. Pharmacother. 2024, 15, 93–104. [Google Scholar] [CrossRef]
- Koch, W. Dietary Polyphenols—Important non-nutrients in the prevention of chronic noncommunicable diseases. A systematic review. Nutrients 2019, 11, 1039. [Google Scholar] [CrossRef]
- Corrêa, W.R.; Serain, A.F.; Netto, L.A.; Marinho, J.V.N.; Arena, A.C.; Aquino, D.F.S.; Kuraoka-Oliveira, Â.M.; Júnior, A.J.; Bernal, L.P.T.; Kassuya, C.A.L.; et al. Anti-inflammatory and antioxidant properties of the extract, tiliroside, and patuletin 3-O-β-D-glucopyranoside from Pfaffia townsendii (Amaranthaceae). Evid. Based Complement. Alternat. Med. 2018, 6057579. [Google Scholar] [CrossRef]
- Snarska, J.; Jakimiuk, K.; Strawa, J.W.; Tomczyk, T.M.; Tomczykowa, M.; Piwowarski, J.P.; Tomczyk, M. A comprehensive review of pedunculagin: Sources, chemistry, biological and pharmacological insights. Int. J. Mol. Sci. 2024, 25, 11511. [Google Scholar] [CrossRef]
- Xu, L.; Li, Y.; Dai, Y.; Peng, J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018, 130, 451–465. [Google Scholar] [CrossRef]
- Abboud, R.; Charcosset, C.; Greige-Gerges, H. Interaction of triterpenoids with human serum albumin: A review. Chem. Phys. Lipids 2017, 207, 260–270. [Google Scholar] [CrossRef]
- Keighley, C.; Kim, H.Y.; Kidd, S.; Chen, S.C.-A.; Alastruey, A.; Dao, A.; Bongomin, F.; Chiller, T.; Wahyuningsih, R.; Forastiero, A.; et al. Candida tropicalis—A systematic review to inform the World Health Organization of a fungal priority pathogens list. Med. Mycol. 2024, 62, myae040. [Google Scholar] [CrossRef]
- Beardsley, J.; Kim, H.Y.; Dao, A.; Kidd, S.; Alastruey-Izquierdo, A.; Sorrell, T.C.; Tacconelli, E.; Chakrabarti, A.; Harrison, T.S.; Bongomin, F.; et al. Candida glabrata (Nakaseomyces glabrata): A systematic review of clinical and microbiological data from 2011 to 2021 to inform the World Health Organization fungal priority pathogens list. Med. Mycol. 2024, 62, myae041. [Google Scholar] [CrossRef]
- Alves, C.T.; Ferreira, I.C.F.R.; Barros, L.; Silva, S.; Azeredo, J.; Henriques, M. Antifungal activity of phenolic compounds identified in flowers from north eastern Portugal against Candida species. Future Microbiol. 2014, 9, 139–146. [Google Scholar] [CrossRef]
- Mendes, A.G.G.; Campos, C.D.L.; Pereira-Filho, J.L.; Pereira, A.P.A.; Reis, G.S.A.; Araújo, Á.W.M.S.; Monteiro, P.M.; Vidal, F.C.B.; Monteiro, S.G.; Figueiredo, I.F.S.; et al. Ellagic acid potentiates the inhibitory effects of fluconazole against Candida albicans. Antibiotics 2024, 13, 1174. [Google Scholar] [CrossRef]
- Yamaguchi, M.U.; Garcia, F.P.; Cortez, D.A.G.; Ueda-Nakamura, T.; Filho, B.P.D.; Nakamura, C.V. Antifungal effects of ellagitannin isolated from leaves of Ocotea odorifera (Lauraceae). Antonie Van Leeuwenhoek 2011, 99, 507–514. [Google Scholar] [CrossRef]
- de Cássia Orlandi Sardi, J.; Gullo, F.P.; Freires, I.A.; Pitangui, N.d.S.; Segalla, M.P.; Fusco-Almeida, A.M.; Rosalen, P.L.; Regasini, L.O.; Mendes-Giannini, M.J.S. Synthesis, antifungal activity of caffeic acid derivative esters, and their synergism with fluconazole and nystatin against Candida spp. Diagn. Microbiol. Infect. Dis. 2016, 86, 387–391. [Google Scholar] [CrossRef]
- Pristov, K.E.; Ghannoum, M.A. Resistance of Candida to azoles and echinocandins worldwide. Clin. Microbiol. Infect. Off. Publ. Eur. Soc. Clin. Microbiol. Infect. Dis. 2019, 25, 792–798. [Google Scholar] [CrossRef]
- Lewis, J.S.; Graybill, J.R. Fungicidal versus fungistatic: What’s in a word? Expert Opin. Pharmacother. 2008, 9, 927–935. [Google Scholar] [CrossRef]
- Graybill, J.R.; Burgess, D.S.; Hardin, T.C. Key issues concerning fungistatic versus fungicidal drugs. Eur. J. Clin. Microbiol. Infect. Dis. Off. Publ. Eur. Soc. Clin. Microbiol. 1997, 16, 42–50. [Google Scholar] [CrossRef]
- Kyle, A.A.; Dahl, M.V. Topical therapy for fungal infections. Am. J. Clin. Dermatol. 2004, 5, 443–451. [Google Scholar] [CrossRef]
- Esmaeili, A.; Saleh, I.; Abu-Dieyeh, M.H. Antifungal potential of plant-based extracts against Candida species: Values, safety concerns, and possible applications. Phytochem. Rev. 2025, 1–44. [Google Scholar] [CrossRef]
- Biswas, A.; Kansal, V. Chapter 12—Herpes virus and its manifestations. In Viral, Parasitic, Bacterial, and Fungal Infections; Bagchi, D., Das, A., Downs, B.W., Eds.; Academic Press: Cambridge, MA, USA, 2023; pp. 125–136. [Google Scholar] [CrossRef]
- Elste, J.; Rabbitt, M.; Wang, C.; Dordick, J.S.; Tiwari, V.; Zhang, F. Marine-derived sulfated glycans display a potent virostatic mechanism to block herpes simplex virus type-1 (HSV-1) entry and spread. Carbohydr. Polym. 2025, 368, 124141. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, D.K.; Park, J.E.; Park, I.H.; Seo, J.G.; Ha, N.J. Antiviral activity of Bifidobacterium adolescentis SPM1605 against Coxsackievirus B3. Biotechnol. Biotechnol. Equip. 2014, 28, 681–688. [Google Scholar] [CrossRef]
- Romanowski, E.G.; Yates, K.A.; Shanks, R.M.Q.; Kowalski, R.P. Benzalkonium chloride demonstrates concentration-dependent antiviral activity against adenovirus in vitro. J. Ocul. Pharmacol. Ther. Off. J. Assoc. Ocul. Pharmacol. Ther. 2019, 35, 311–314. [Google Scholar] [CrossRef]
- Chen, C.Z.; Shinn, P.; Itkin, Z.; Eastman, R.T.; Bostwick, R.; Rasmussen, L.; Huang, R.; Shen, M.; Hu, X.; Wilson, K.M.; et al. Drug repurposing screen for compounds inhibiting the cytopathic effect of SARS-CoV-2. Front. Pharmacol. 2021, 11, 592737. [Google Scholar] [CrossRef]
- Kurokawa, M.; Ochiai, H.; Nagasaka, K.; Neki, M.; Xu, H.; Kadota, S.; Sutardjo, S.; Matsumoto, T.; Namba, T.; Shiraki, K. Antiviral traditional medicines against Herpes Simplex Virus (HSV-1), poliovirus, and measles virus in vitro and their therapeutic efficacies for HSV-1 infection in mice. Antiviral Res. 1993, 22, 175–188. [Google Scholar] [CrossRef] [PubMed]
- Kurokawa, M.; Hozumi, T.; Basnet, P.; Nakano, M.; Kadota, S.; Namba, T.; Kawana, T.; Shiraki, K. Purification and characterization of eugeniin as an anti-herpesvirus compound from Geum japonicum and Syzygium aromaticum. J. Pharmacol. Exp. Ther. 1998, 284, 728–735. [Google Scholar] [CrossRef]
- Yukawa, T.A.; Kurokawa, M.; Sato, H.; Yoshida, Y.; Kageyama, S.; Hasegawa, T.; Namba, T.; Imakita, M.; Hozumi, T.; Shiraki, K. Prophylactic treatment of cytomegalovirus infection with traditional herbs. Antiviral Res. 1996, 32, 63–70. [Google Scholar] [CrossRef]
- Kurokawa, M.; Nagasaka, K.; Hirabayashi, T.; Uyama, S.; Sato, H.; Kageyama, T.; Kadota, S.; Ohyama, H.; Hozumi, T.; Namba, T.; et al. Efficacy of traditional herbal medicines in combination with acyclovir against Herpes Simplex Virus Type 1 infection in vitro and in vivo. Antiviral Res. 1995, 27, 19–37. [Google Scholar] [CrossRef]
- Xu, H.X.; Ming, D.S.; Dong, H.; But, P.P.H. A New anti-HIV triterpene from Geum japonicum. Chem. Pharm. Bull. 2000, 48, 1367–1369. [Google Scholar] [CrossRef]
- Xu, H.X.; Zeng, F.Q.; Wan, M.; Sim, K.Y. Anti-HIV Triterpene Acids from Geum japonicum. J. Nat. Prod. 1996, 59, 643–645. [Google Scholar] [CrossRef]
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef]
- Kuntubek, G.N.; Mukhamedsadykova, A.Z.; Kozhanova, K.K.; Mombekov, S.Y. Method for Preparing Extract from Above-ground Parts of Geum aleppicum Jacq. Yellow Avens Plant. KAZ Patent 8117, 26 January 2024. [Google Scholar]
- Kadyrbayeva, G.; Zagórska, J.; Grzegorczyk, A.; Gaweł-Bęben, K.; Strzępek-Gomółka, M.; Ludwiczuk, A.; Czech, K.; Kumar, M.; Koch, W.; Malm, A.; et al. The phenolic compounds profile and cosmeceutical significance of two Kazakh species of onions: Allium galanthum and A. turkestanicum. Molecules 2021, 26, 5491. [Google Scholar] [CrossRef]
- Korga-Plewko, A.; Zgórka, G.; Józefczyk, A.; Grzegorczyk, A.; Biernasiuk, A.; Boguszewska, A.; Rajtar, B.; Świątek, Ł.; Polz-Dacewicz, M.; Kołodziej, P.; et al. Phytochemical profiling and biological activity of the extracts obtained from green biomass of three Miscanthus, L. species using supercritical carbon dioxide extraction. Ind. Crops Prod. 2022, 188, 115641. [Google Scholar] [CrossRef]
- Kubik, J.; Waszak, Ł.; Adamczuk, G.; Humeniuk, E.; Iwan, M.; Adamczuk, K.; Michalczuk, M.; Korga-Plewko, A.; Józefczyk, A. Phytochemical analysis and anti-cancer properties of extracts of Centaurea castriferrei Borbás & Waisb. Molecules 2022, 27, 7537. [Google Scholar] [CrossRef]
- Svečnjak, L.; Marijanović, Z.; Okińczyc, P.; Kuś, P.M.; Jerković, I. Mediterranean propolis from the Adriatic sea islands as a source of natural antioxidants: Comprehensive chemical biodiversity determined by GC-MS, FTIR-ATR, UHPLC-DAD-QqTOF-MS, DPPH and FRAP assay. Antioxidants 2020, 9, 337. [Google Scholar] [CrossRef]
- Mukhamedsadykova, A.Z.; Kasela, M.; Kozhanova, K.K.; Sakipova, Z.B.; Kukuła-Koch, W.; Józefczyk, A.; Świątek, Ł.; Rajtar, B.; Iwan, M.; Kołodziej, P.; et al. Anthelminthic and antimicrobial effects of hedge woundwort (Stachys sylvatica L.) growing in southern Kazakhstan. Front. Pharmacol. 2024, 15, 1386509. [Google Scholar] [CrossRef]
- Kadyrbay, A.; Ibragimova, L.N.; Iwan, M.; Ludwiczuk, A.; Biernasiuk, A.; Sakipova, Z.B.; Świątek, Ł.; Salwa, K.; Korga-Plewko, A.; Zhaparkulova, K.A.; et al. Essential Oil from the Aerial Parts of Artemisia Serotina Bunge (Winter Wormwood) Growing in Kazakhstan—Phytochemical Profile and Bioactivity. Molecules 2025, 30, 2956. [Google Scholar] [CrossRef] [PubMed]
- Pecio, Ł.; Kozachok, S.; Saber, F.R.; Garcia-Marti, M.; El-Amier, Y.; Mahrous, E.A.; Świątek, Ł.; Boguszewska, A.; Skiba, A.; Elosaily, A.H.; et al. Metabolic Profiling of Ochradenus baccatus Delile. Utilizing UHPLC-HRESIMS in Relation to the in Vitro Biological Investigations. Food Chem. 2023, 412, 135587. [Google Scholar] [CrossRef] [PubMed]
No. | Ion | Rt (min) | Formula | m/z (calc.) | m/z (exp.) | Δ (mmu) | RDB | MS/MS Fragments | Compound | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
1 | [M-H]- | 4.158 | C13H16O9 | 315.0722 | 315.0739 | −5.52 | 6 | 153 | Protocatechoylglucose | [21] |
2 | [M-H]- | 4.359 | C7H6O5 | 169.0137 | 169.0159 | 2.2 | 5 | 125, 79 | Gallic acid | [21] |
3 | [M-H]- | 6.87 | C7H6O4 | 153.0187 | 153.0215 | 2.8 | 5 | 136, 124, 107 | Protocatechuic acid | [21] |
4 | [M-H]- | 8.292 | C34H24O22 | 783.0681 | 783.0719 | −4.15 | 23 | 633, 481, 301, 275, 248 | Pedunculagin I | [22] |
5 | [M-H]- | 9.464 | C16H18O9 | 353.0872 | 353.0909 | −8.74 | 8 | 191, 179, 135 | Chlorogenic acid | [23] |
6 | [M-H]- | 10.7 | C34H24O22 | 783.0681 | 783.0744 | −7.34 | 23 | 481, 301, 275 | Pedunculagin II | [22] |
7 | [M-H]- | 11.6 | C27H26O19 | 653.0996 | 653.1024 | −4.35 | 15 | 477, 301 | Quercetin-bis-hexuronide | [4] |
8 | [M-H]- | 11.97 | C27H25O18 | 635.0890 | 635.0944 | −8.51 | 16 | 461, 421, 285, 169 | Trigalloyl hexose | [22] |
9 | [M-H]- | 12.5 | C13H8O8 | 291.0146 | 291.0175 | −9.79 | 10 | 247, 207, 163 | Tachioside | [23] |
10 | [M-H]- | 13.063 | C7H6O4 | 179.0350 | 179.0365 | −8.43 | 6 | 166, 135, 107 | Caffeic acid | [21] |
11 | [M-H]- | 13.15 | C34H26O22 | 785.0837 | 785.0829 | 1.78 | 22 | 633, 483, 419, 301, 275, 249 | Tellimagrandin 1 | [23] |
12 | [M-H]- | 13.649 | C20H16O13 | 463.0518 | 463.0546 | −6.0 | 13 | 419, 301 | Ellagic acid glucoside | [22] |
13 | [M-H]- | 14.117 | C13H12O8 | 295.0459 | 295.0490 | −10.33 | 8 | 179, 133, 115 | Caffeoylmalic acid isomer 1 | [24] |
14 | [M-H]- | 14.988 | C13H12O8 | 295.0459 | 295.0489 | −10.0 | 8 | 179, 133, 115 | Caffeoylmalic acid isomer 2 | [24] |
15 | [M-H]- | 16.494 | C9H10O5 | 197.0450 | 197.0513 | 6.3 | 5 | 169, 124 | Syringic acid | [21] |
16 | [M-H]- | 17.9 | C14H6O8 | 300.9999 | 307.0017 | −8.97 | 12 | 284, 257, 229 | Ellagic acid | [22] |
17 | [M-H]- | 20.427 | C7H6O3 | 137.0238 | 137.0288 | 6.65 | 5 | - | Hydroxybenzoic acid | [21] |
18 | [M-H]- | 21.013 | C30H26O13 | 593.1295 | 593.1333 | −5.45 | 18 | 447, 285, 285 | Tiliroside | [21] |
19 | [M-H]- | 22.01 | C30H48O6 | 503.3378 | 503.3363 | 3.0 | 7 | 485, 441, 409 | Hydroxytormentic acid isomer | [25] |
20 | [M-H]- | 22.53 | C30H48O6 | 503.3378 | 503.3416 | −8.1 | 7 | 485, 441, 295 | Hydroxytormentic acid isomer | [25] |
21 | [M-H]- | 22.72 | C30H46O7 | 517.3171 | 517.3146 | 4.78 | 8 | 479, 455, 439, 153 | Trihydroxyursendioic acid | [25] |
22 | [M-H]- | 23.11 | C30H48O5 | 487.3429 | 487.3407 | 4.5 | 7 | 469, 425 | Tormentic acid | [25] |
23 | [M-H]- | 24.21 | C30H46O5 | 485.3272 | 485.3281 | −1.75 | 8 | 379, 319, 291, 277, 161 | Geumonoid | [25] |
24 | [M-H]- | 25.03 | C30H48O4 | 471.3480 | 471.3501 | −4.48 | 7 | 471, 1029 | Pomolic acid | [25] |
No. | No. from MS Analysis | Rt (min) | Calc. at λ (nm) | Compound | mg/g of Dry Extract | SD/RSD |
---|---|---|---|---|---|---|
1 | 3 | 3.41 | 254 | Protocatechuic acid | 0.215 | 0.0/0.0 |
2 | 5 | 4.53 | 325 | Chlorogenic acid | 0.016 | 0.0/0.9 |
3 | - | 4.97 | 254 | Kaempferol derivative | 0.14 | 0.0/0.0 |
4 | 10 | 6.144 | 325 | Caffeic acid | 0.02 | 0.0/0.4 |
5 | 15 | 6.152 | 280 | Syringic acid | 0.12 | 0.0/0.1 |
6 | 17 | 6.17 | 254 | Hydroxybenzoic acid | 0.261 | 0.0/0.2 |
7 | 13 | 8.79 | 325 | Caffeic acid derivative 1 | 0.169 | 0.0/0.2 |
8 | 16 | 12.24 | 254 | Ellagic acid | 2.28 | 0.0/0.0 |
9 | 14 | 13.54 | 325 | Caffeic acid derivative 2 | 0.04 | 0.0/0.4 |
10 | 7 | 16.89 | 254 | Quercetin-derivative | 0.05 | 0.0/0.5 |
Parameter | Assay | Value | Unit | RSD (%) |
---|---|---|---|---|
Total polyphenol content | Folin–Ciocalteu | 131.45 ± 1.84 | mg GAE/g | 1.40 |
Total flavonoid content | Pharmacopeial (AlCl3) | 12.75 ± 0.17 | mg QUE/g | 1.34 |
Antioxidant activity | FRAP | 3.82 ± 0.07 | mmol Fe2+/g | 1.92 |
DPPH | 106.61 ± 0.89 | mg GAE/g | 0.83 |
Bacteria | Reference Antimicrobial | G. Aleppicum Extract | |||
---|---|---|---|---|---|
MIC (µg/mL) | MIC (mg/mL) | MBC (mg/mL) | MBC/MIC | Effect | |
Staphylococcus aureus ATCC 29213 | 0.5 * | 2 | 2 | 1 | bactericidal |
Escherichia coli ATCC 25922 | 0.004 ** | 8 | 8 | 1 | |
Pseudomonas aeruginosa ATCC 27853 | 0.5 ** | 2 | 8 | 4 | |
Fungi (Yeasts) | MIC (mg/mL) | MFC (mg/mL) | MFC/MIC | Effect | |
Candida albicans ATCC 10231 | 1 *** | 1 | 8 | 8 | fungistatic |
Candida krusei ATCC 14243 | 16 *** | 1 | 8 | 8 | |
Candida parapsilosis ATCC 22019 | 0.125 *** | 1 | 8 | 8 | |
Candida tropicalis ATCC 13803 | 0.5 *** | 0.125 | 8 | 64 | |
Candida glabrata ATCC 90030 | 16 *** | 0.125 | 8 | 64 | |
Candida lusitaniae ATCC 34449 | 1 *** | 1 | 4 | 4 | fungicidal |
Candida auris CDC B11903 | >32 *** | 8 | 16 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuntubek, G.N.; Kasela, M.; Kozhanova, K.K.; Kukula-Koch, W.; Świątek, Ł.; Salwa, K.; Okińczyc, P.; Józefczyk, A.; Widelski, J.; Kadyrbayeva, G.M.; et al. Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan. Molecules 2025, 30, 3888. https://doi.org/10.3390/molecules30193888
Kuntubek GN, Kasela M, Kozhanova KK, Kukula-Koch W, Świątek Ł, Salwa K, Okińczyc P, Józefczyk A, Widelski J, Kadyrbayeva GM, et al. Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan. Molecules. 2025; 30(19):3888. https://doi.org/10.3390/molecules30193888
Chicago/Turabian StyleKuntubek, Gulnur N., Martyna Kasela, Kaldanay K. Kozhanova, Wirginia Kukula-Koch, Łukasz Świątek, Kinga Salwa, Piotr Okińczyc, Aleksandra Józefczyk, Jarosław Widelski, Gulnara M. Kadyrbayeva, and et al. 2025. "Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan" Molecules 30, no. 19: 3888. https://doi.org/10.3390/molecules30193888
APA StyleKuntubek, G. N., Kasela, M., Kozhanova, K. K., Kukula-Koch, W., Świątek, Ł., Salwa, K., Okińczyc, P., Józefczyk, A., Widelski, J., Kadyrbayeva, G. M., Mukhamedsadykova, A. Z., Sakipova, Z. B., & Malm, A. (2025). Unraveling the Chemical Composition and Biological Activity of Geum aleppicum Jacq.: Insights from Plants Collected in Kazakhstan. Molecules, 30(19), 3888. https://doi.org/10.3390/molecules30193888