molecules-logo

Journal Browser

Journal Browser

Synthesis, Characterization, and Biological Evaluation of Alkaloids

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: 30 June 2025 | Viewed by 2442

Special Issue Editor


E-Mail Website
Guest Editor
Department of Resources Science of Traditional Chinese Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
Interests: utilization of chinese medicine resources; biosynthesis and synthetic biology of important natural products from plants; structural biology and catalytic mechanism of biosynthesis enzymes

Special Issue Information

Dear Colleagues,

Alkaloids are low-molecular-weight, nitrogen-containing compounds that are found in approximately 20% of plant species. They play a crucial role in medicine due to their significant biological activities. Recent advancements in genomics, transcriptomics, proteomics, metabolomics, and phenomics have enabled scientists to utilize modern technologies in the fields of synthesis, characterization, and biological evaluation of alkaloids, particularly focusing on biosynthesis and synthetic biology of key alkaloids like Vinblastine, Colchicine, Morphine, Codeine, and Scopolamine.

This research topic is dedicated to publishing original research articles and review articles that explore the application of omics approaches in studying the biosynthesis of important alkaloids derived from plants. Additionally, we welcome submissions on the structural biology and catalytic mechanisms of biosynthesis enzymes involved in alkaloid production. Contributions that involve the effective identification of molecules with novel structural features, isolation and characterization of trace amounts of natural products, derivatization of natural product analogs to investigate structure–activity relationships, and industrial total synthesis of complex active natural products through synthetic biology are encouraged.

Furthermore, research studies focusing on the application of omics technologies in the development and utilization of Chinese medicine resources are highly valued and welcome in this Special Issue. We look forward to receiving your innovative research contributions that shed light on the synthesis, characterization, and biological evaluation of alkaloids using cutting-edge omics technologies.

Dr. Yucheng Zhao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biological evaluation
  • alkaloids
  • biosynthesis
  • synthetic biology
  • catalytic mechanism
  • biosynthesis enzymes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

18 pages, 2356 KiB  
Article
Effect of Auxins on the Accumulation of Alkaloids in Ungrafted Annona emarginata (Schltdl.) H. Rainer and Annona emarginata (Schltdl.) H. Rainer Grafted with Annona atemoya Mabb.
by Carolina Ovile Mimi, Iván De-la-Cruz-Chacón, Felipe Moura Araujo da Silva, Victor Cauan Rocha Roberto and Gisela Ferreira
Molecules 2025, 30(9), 2070; https://doi.org/10.3390/molecules30092070 - 7 May 2025
Viewed by 127
Abstract
Plant regulators, such as auxins, modulate the synthesis of specialized metabolites and aid in the bioprospection of molecules. Annona emarginata is known to produce antifungal alkaloids and serves as a rootstock for Annona atemoya. This study evaluated the effects of indoleacetic acid [...] Read more.
Plant regulators, such as auxins, modulate the synthesis of specialized metabolites and aid in the bioprospection of molecules. Annona emarginata is known to produce antifungal alkaloids and serves as a rootstock for Annona atemoya. This study evaluated the effects of indoleacetic acid (IAA), indolebutyric acid (IBA), and naphthaleneacetic acid (NAA) applications on the accumulation of alkaloids in ungrafted A. emarginata and grafted with A. atemoya. Total alkaloids were analyzed by spectrophotometry, and alkaloid profiles were analyzed by DI-MS at 8, 14, and 20 days after treatments (DAT). The results indicated that IAA and NAA had the strongest effects on increasing the synthesis of alkaloids in the roots of ungrafted seedlings. In grafted plants, IBA had a more pronounced effect on roots; however, at final evaluation, all three auxins had an impact on both roots and leaves. Chemometric analysis revealed that auxins also altered the alkaloid composition in both seedling types. Nineteen alkaloids were identified regardless of treatment and harvest time. Eight alkaloids were identified for the first time in A. emarginata and nine were identified in A. atemoya. The main alkaloids found in ungrafted seedlings treated with IAA, IBA, and NAA were liriodenine and lanuginosine. In grafted seedlings, liriodenine and reticuline were the primary alkaloids found in roots, whereas liriodenine, lanuginosine, and reticuline were significantly present in leaves. The use of auxins to enhance alkaloid biosynthesis demonstrates their potential for bioprospection and the development of crops tolerant to biotic stress. Full article
(This article belongs to the Special Issue Synthesis, Characterization, and Biological Evaluation of Alkaloids)
Show Figures

Figure 1

19 pages, 4122 KiB  
Article
Transcriptome Analysis of Stephania yunnanensis and Functional Validation of CYP80s Involved in Benzylisoquinoline Alkaloid Biosynthesis
by Wenlong Shi, Qishuang Li, Xinyi Li, Linglong Luo, Jingyi Gan, Ying Ma, Jian Wang, Tong Chen, Yifeng Zhang, Ping Su, Xiaohui Ma, Juan Guo and Luqi Huang
Molecules 2025, 30(2), 259; https://doi.org/10.3390/molecules30020259 - 10 Jan 2025
Viewed by 795
Abstract
The medicinal plant Stephania yunnanensis is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported [...] Read more.
The medicinal plant Stephania yunnanensis is rich in aporphine alkaloids, a type of benzylisoquinoline alkaloid (BIA), with aporphine being the representative and most abundant compound, but our understanding of the biosynthesis of BIAs in this plant has been relatively limited. Previous research reported the genome of S. yunnanensis and preliminarily identified the norcoclaurine synthase (NCS), which is involved in the early stages of the BIA biosynthetic pathways. However, the key genes promoting the formation of the aporphine skeleton have not yet been reported. In this study, based on the differences in the content of crebanine and several other BIAs in different tissues, we conducted transcriptome sequencing of roots, stems, and leaves. We then identified candidate genes through functional annotation and sequence alignment and further analyzed them in combination with the genome. Based on this analysis, we identified three CYP80 enzymes (SyCYP80Q5-1, SyCYP80Q5-3, and SyCYP80G6), which exhibited different activities toward (S)- and (R)-configured substrates in S. yunnanensis and demonstrated strict stereoselectivity enroute to aporphine. This study provides metabolomic and transcriptomic information on the biosynthesis of BIAs in S. yunnanensis, offers valuable insights into the elucidation of BIA biosynthesis, and lays the foundation for the complete analysis of pathways for more aporphine alkaloids. Full article
(This article belongs to the Special Issue Synthesis, Characterization, and Biological Evaluation of Alkaloids)
Show Figures

Figure 1

18 pages, 4915 KiB  
Article
Novel 4-alkoxy Meriolin Congeners Potently Induce Apoptosis in Leukemia and Lymphoma Cells
by Karina S. Krings, Tobias R. Wassenberg, Pablo Cea-Medina, Laura Schmitt, Ilka Lechtenberg, Tanya R. Llewellyn, Nan Qin, Holger Gohlke, Sebastian Wesselborg and Thomas J. J. Müller
Molecules 2024, 29(24), 6050; https://doi.org/10.3390/molecules29246050 - 23 Dec 2024
Viewed by 1071
Abstract
Meriolins (3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids variolin and meridianin and display a strong cytotoxic potential. We have recently shown that the novel derivative meriolin 16 is highly cytotoxic in several lymphoma and leukemia cell lines as well as [...] Read more.
Meriolins (3-(pyrimidin-4-yl)-7-azaindoles) are synthetic hybrids of the naturally occurring alkaloids variolin and meridianin and display a strong cytotoxic potential. We have recently shown that the novel derivative meriolin 16 is highly cytotoxic in several lymphoma and leukemia cell lines as well as in primary patient-derived lymphoma and leukemia cells and predominantly targets cyclin-dependent kinases (CDKs). Here, we efficiently synthesized nine novel 2-aminopyridyl meriolin congeners (3a3i), i.e., pyrimeriolins, using a one-pot Masuda borylation-Suzuki coupling (MBSC) sequence, with eight of them bearing lipophilic alkoxy substituents of varying length, to systematically determine the influence of the alkoxy sidechain length on the biological activity. All the synthesized derivatives displayed a pronounced cytotoxic potential, with six compounds showing IC50 values in the nanomolar range. Derivatives 3b3f strongly induced apoptosis and activated caspases with rapid kinetics within 3–4 h in Jurkat leukemia and Ramos lymphoma cells. The induction of apoptosis by the most potent derivative 3e was mediated by the intrinsic mitochondrial death pathway, as it was blocked in caspase-9 deficient and Apaf-1 knockdown Jurkat cells. However, as recently shown for meriolin 16, derivative 3e was able to induce apoptosis in the Jurkat cells overexpressing the antiapoptotic protein Bcl-2. Since tumor cells often inactivate the intrinsic mitochondrial apoptosis pathway (e.g., by overexpression of Bcl-2), these meriolin congeners represent promising therapeutic agents for overcoming therapeutic resistance. Full article
(This article belongs to the Special Issue Synthesis, Characterization, and Biological Evaluation of Alkaloids)
Show Figures

Graphical abstract

Back to TopTop