molecules-logo

Journal Browser

Journal Browser

Phytochemistry and Biological Activity Perspectives of Medicinal Plants

A special issue of Molecules (ISSN 1420-3049). This special issue belongs to the section "Natural Products Chemistry".

Deadline for manuscript submissions: closed (31 December 2024) | Viewed by 24521

Special Issue Editor


E-Mail Website
Guest Editor
Materials Science Center (MSC), Mohammed V University in Rabat, LPCMIO, Ecole Normale Supérieure, Rabat, Morocco
Interests: medicinal plants; natural products; polyphenols; essential oils; extraction; isolation; characterization; biological properties; chromatography; spectroscopy; nuclear magnetic resonance; mass spectrometry
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Medicinal plants have been used since ancient times and humans have always turned to vegetal resources for food or medicine. Medicinal plants have thus been a source of metabolites of medical interest. Nowadays, despite the development of many synthetic products with potent medical properties, natural products from medicinal plants remain always topical. The renewed interest that we are witnessing today, the dedication to and the infatuation with natural products, comes from the fact that they are usually considered safer and healthier than synthetic products and are often free of artificial additives.

In view of their leading role as reservoirs of many metabolites with medical prominence and their important role in drug discovery and development, medicinal plants have been the subject of several scientific research works. However, although a number of manuscripts have been published on the phytochemical composition and the biological properties of medicinal plants, this field continue to be an open research area of constant interest.

This Special Issue devoted to “Phytochemistry and Biological Activity of Medicinal Plants” aims to be a platform for the publication of the latest advances in the field of medicinal plants. Research works on the extraction, structural characterization, and quantitative isolation of natural products from medicinal plants using powerful and potent sophisticated analytical tools are welcome. Synthesis of natural products and the use of isolated natural substances as starting materials or precursors for the formation of active ingredient with enhanced biological activities are also welcome. Finally, manuscripts related to the biological activities of medicinal plants extracts‘, their toxicity, and their bioavailability are welcome as well.

We sincerely look forward to receiving your contributions focusing on the phytochemistry and biological activities of medicinal plants. We hope that this Special Issue of Molecules will be of a great interest for a broad research scientific community and will enhance our knowledge of natural products.

Prof. Dr. Nour Eddine Es-Safi
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Molecules is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • medicinal plants
  • natural products
  • bioactive compounds
  • extraction
  • eco-extraction
  • isolation
  • bioguided isolation
  • characterization
  • synthesis
  • biological properties
  • bioavailability
  • toxicity
  • industrial application

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (15 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

23 pages, 409 KiB  
Article
Diplopterys pubipetala (Malpighiaceae): Insights into Antioxidant, Antibacterial, and Antifungal Activities with Chemical Composition Analysis via UHPLC-MS/MS and GC/MS
by Veronica de Melo Sacramento, Vanessa de Andrade Royo, Pedro Henrique Fonseca Veloso, Kamila Soares Freitas Souto, Alisson Samuel Portes Caldeira, Carlos Henrique Gomes Martins, Sara Lemes de Souza, Ezequias Pessoa de Siqueira, Fernando Ribeiro Cassiano, Afrânio Farias de Melo Júnior, Dario Alves de Oliveira, Elytania Veiga Mnezes and Tânia Maria de Almeida Alves
Molecules 2025, 30(4), 946; https://doi.org/10.3390/molecules30040946 - 18 Feb 2025
Viewed by 644
Abstract
Diplopterys pubipetala (Malpighiaceae) is a liana native to the Brazilian Cerrado biome, traditionally used in Ayahuasca preparations. Despite its cultural importance, research on its chemical composition and biological activities, which may have therapeutic potential, is limited. This study investigated the volatile and non-volatile [...] Read more.
Diplopterys pubipetala (Malpighiaceae) is a liana native to the Brazilian Cerrado biome, traditionally used in Ayahuasca preparations. Despite its cultural importance, research on its chemical composition and biological activities, which may have therapeutic potential, is limited. This study investigated the volatile and non-volatile secondary metabolites of D. pubipetala leaves, their antioxidant capacity, and their antibacterial and antifungal activities. Volatile compounds were identified using gas chromatography-mass spectrometry (GC-MS) coupled to solid-phase microextraction (SPME), while non-volatile compounds were annotated using UHPLC-MS/MS-ESI-Q-TOF. Antioxidant capacity was evaluated by DPPH assay, and antimicrobial activity was assessed in vitro against Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida species (C. albicans, C. tropicalis, C. glabrata). GC-MS analysis revealed 25 predominant volatile compounds, including ethyl dodecanoate, ethyl tetradecanoate, nonanoic acid, and 5-methylhexan-2-one, with documented antifungal, antioxidant, and antimicrobial activities. The crude extract and ethyl acetate fraction showed strong antioxidant capacity (EC50 9.83 µg/mL and 6.42 µg/mL, respectively), and antifungal effects were observed against Candida species. This study provides the first comprehensive investigation of the antioxidant capacity and antibacterial and antifungal activities of D. pubipetala, together with a detailed chemical profile of its volatile compounds. Full article
13 pages, 1677 KiB  
Article
Comparative Evaluation of Vasorelaxant and Antiplatelet Activity of Two Plant-Derived Benzoquinones: Rapanone and Embelin
by Dagmara Wróbel-Biedrawa, Monika Kubacka, Magdalena Kotańska, Marek Bednarski, Karolina Grabowska and Irma Podolak
Molecules 2025, 30(4), 845; https://doi.org/10.3390/molecules30040845 - 12 Feb 2025
Viewed by 593
Abstract
Vasorelaxant and antiplatelet agents play an important role in preventing and combating endothelial dysfunction, atherosclerosis and a plethora of associated cardiovascular diseases (CVDs). CVDs are the leading cause of death worldwide and nowadays occur not only in developed but also in developing societies. [...] Read more.
Vasorelaxant and antiplatelet agents play an important role in preventing and combating endothelial dysfunction, atherosclerosis and a plethora of associated cardiovascular diseases (CVDs). CVDs are the leading cause of death worldwide and nowadays occur not only in developed but also in developing societies. They include, among others, coronary heart disease, cerebrovascular disease and peripheral artery disease. Due to their high prevalence, it is important to seek efficient preventive measures, such as lifestyle changes and the implementation of appropriate herbal dietary supplementation and treatment alternatives. Plant-derived quinones have recently drawn researchers’ attention due to their interesting biological potential. Embelin and rapanone are two plant-derived benzoquinones with anti-inflammatory and antioxidant properties. Embelin has already been shown to have vasorelaxant and antiplatelet activity, but little is known about rapanone in the context of CVDs. Therefore, we decided to comparatively evaluate their activity in a specially designed experimental protocol. Following the isolation of both benzoquinones from plant sources (rapanone from Ardisia crenata leaves; embelin from Lysimachia punctata roots), their effects were comparatively assessed in a biofunctional study on isolated rat aorta (precontracted with phenylephrine) and in vitro on platelet aggregation. Both benzoquinones showed 50% vasorelaxation in an NO-dependent manner. Interestingly, rapanone was slightly more effective as an antiplatelet agent than embelin. The antiplatelet effect of both benzoquinones was specific, as no cytotoxicity towards platelets was observed at the concentrations tested. This is the first report on the vasorelaxant and antiplatelet activity of rapanone. Full article
Show Figures

Graphical abstract

24 pages, 1712 KiB  
Article
Seseli foliosum (Somm. et Levier) Manden.—A Comprehensive Phytochemical and Biological Evaluation
by Mariam Nersezashvili, Dali Berashvili, Malkhaz Jokhadze, Mariam Metreveli, Łukasz Świątek, Kinga Salwa, Łukasz Pecio, Krzysztof Kamil Wojtanowski, Adrianna Skiba, Izabela Korona-Głowniak, Gökhan Zengin and Krystyna Skalicka-Woźniak
Molecules 2025, 30(3), 725; https://doi.org/10.3390/molecules30030725 - 5 Feb 2025
Viewed by 1476
Abstract
The genus Seseli L. (Apiaceae family) is widespread across Europe and Asia, with ten species identified in Georgia. Among these, Seseli foliosum (Somm. et Levier) Manden., is notable for its unique pharmacological properties. To our knowledge, comprehensive phytochemical and biological investigations have not [...] Read more.
The genus Seseli L. (Apiaceae family) is widespread across Europe and Asia, with ten species identified in Georgia. Among these, Seseli foliosum (Somm. et Levier) Manden., is notable for its unique pharmacological properties. To our knowledge, comprehensive phytochemical and biological investigations have not yet been conducted. The primary aim of this research is to explore the chemical and biological properties of S. foliosum, thereby enhancing its potential applications in medicine and related fields. Different chromatographic techniques were utilized to isolate individual compounds and to identify the chemical composition of S. foliosum MeOH and Et2O extracts from seeds and roots. A battery of biological assays (antimicrobial, antioxidant, enzymatic, anxiolytic, and cytotoxic) were employed to assess the pharmacological properties of the extracts. The results from gas chromatography with mass spectrometry (GC/MS) revealed that both MeOH and Et2O extracts contain a diverse array of compounds, including monoterpenoids, sesquiterpenoids, and phenolic compounds. Furanocoumarin edultin was isolated from the MeOH extract by liquid–liquid separation (LLS). The MeOH extracts exhibited important antioxidant, enzyme inhibitory, and antimicrobial activities with notable efficacy against Staphylococcus aureus (MIC 125 µg/mL) and Candida glabrata (MIC 62.5 µg/mL). Underground Et2O extracts showed advanced cytotoxic activity, particularly against hypopharyngeal carcinoma cells (CC50 22.33 µg/mL and 27.16 µg/mL, respectively). The study provides a wide-range analysis of the phytochemical composition and biological activities of S. foliosum, highlighting its potential as a source of bioactive compounds. These findings contribute to the understanding of the therapeutic potential of S. foliosum and lay the groundwork for further pharmacological and clinical research. Full article
Show Figures

Figure 1

20 pages, 1690 KiB  
Article
From Waste to Value: Optimization of Ultrasound-Assisted Extraction of Anthocyanins and Flavonols from Pistacia lentiscus L. Oilcakes
by Lucrezia Muti, Luana Beatriz dos Santos Nascimento, Giulia Goracci, Cassandra Detti, Cecilia Brunetti, Anna Rita Bilia, Francesco Ferrini and Antonella Gori
Molecules 2025, 30(2), 237; https://doi.org/10.3390/molecules30020237 - 9 Jan 2025
Viewed by 973
Abstract
Pistacia lentiscus L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of P. lentiscus have been widely utilized in [...] Read more.
Pistacia lentiscus L., commonly known as the mastic tree or lentisk, is a woody Mediterranean plant revered for its ecological relevance as well as for its extensive ethnobotanical heritage. Historically, the fruits and the resin of P. lentiscus have been widely utilized in traditional medicine, underscoring its important role in local healing practices. Given these properties, this study explored an innovative approach to efficiently extract anthocyanins and flavonols from P. lentiscus oilcakes utilizing ultrasound-assisted extraction (UAE) as an alternative to conventional solvent extraction. Liquid chromatography–mass spectrometry (LC-MS) and high-performance liquid chromatography with diode-array detection (HPLC-DAD) were used to identify and quantify the anthocyanins and flavonols, revealing the successful extraction of eight distinct anthocyanins and twenty flavonols. A Fractional Factorial Design (FFD) followed by a Box–Behnken design (BBD) were applied to optimize the yield of anthocyanins and flavonols. The optimal extraction conditions found were to be an extraction time of 15 min with 70% ethanol as the solvent and a liquid-to-solid ratio of 0.012 L g−1, which resulted in a maximum extraction yield of 19.78 mg g−1 dry extract for the Total Flavonol Content and over 25.4 mg g−1 dry extract for the Total Flavonol and Anthocyanin Content. By elucidating the optimal conditions for extracting anthocyanins and flavonol glycosides, this study opens promising avenues for utilizing P. lentiscus oilcake by-products, supporting sustainable practices, and advancing the valorization of Mediterranean bio-resources for health-promoting applications. Full article
Show Figures

Figure 1

18 pages, 1429 KiB  
Article
Effect of the Type of Herbal Preparations (Powdered Plant Material vs. Dry Ethanolic Extracts) on the Bioaccessibility of Bearberry (Arctostaphylos uva-ursi (L.) Spreng.) Phytochemicals in Simulated Digestion Conditions
by Łukasz Sęczyk, Danuta Sugier and Piotr Sugier
Molecules 2024, 29(24), 5968; https://doi.org/10.3390/molecules29245968 - 18 Dec 2024
Viewed by 815
Abstract
The main aim of this study was to determine the potential bioaccessibility of bearberry phytochemicals influenced by the type of herbal preparations. Herbal preparations–powdered plant materials and dry extracts obtained using various ethanol concentrations (0%, 20%, 40%, 60%, 80%, and 100%) were subjected [...] Read more.
The main aim of this study was to determine the potential bioaccessibility of bearberry phytochemicals influenced by the type of herbal preparations. Herbal preparations–powdered plant materials and dry extracts obtained using various ethanol concentrations (0%, 20%, 40%, 60%, 80%, and 100%) were subjected to simulated gastric or gastrointestinal digestion for the evaluation of the bioaccessibility of the phytochemicals. The phytochemical characterization of the plant material, dry extracts, and potentially bioaccessible fractions was performed using high-performance liquid chromatography (HPLC) and spectrophotometric assays. The content of the main compounds, i.e., arbutin, hydroquinone, hyperoside, pentagalloylglucose, and picein, as well as the total phenolic content and in vitro antioxidant activity through the ABTS•+-scavenging activity and Fe3+-reducing power were determined. The bioaccessibility of arbutin, i.e., the main compound in bearberry, was high, in most cases exceeding 95%, and was generally unaffected by the experimental factors; however, the changes in the content of the other compounds, the total phenolic content, and the antioxidant activity were more prominent and influenced by the type of the herbal preparation and the stage of digestion. Given the compromise between the abundance of the bearberry phytochemicals, the antioxidant activity, and the resulting potential bioaccessibility of these phytochemicals, the dry extracts prepared with 40% ethanol seem to be the most promising for phytopharmaceutical purposes and functional food applications. Full article
Show Figures

Graphical abstract

17 pages, 1405 KiB  
Article
Phytochemical Analysis and Biological Evaluation of Carob Leaf (Ceratonia siliqua L.) Crude Extracts Using NMR and Mass Spectroscopic Techniques
by Themistoklis Venianakis, Nikolaos Parisis, Atalanti Christou, Vlasios Goulas, Nikolaos Nikoloudakis, George Botsaris, Tjaša Goričan, Simona Golič Grdadolnik, Andreas G. Tzakos and Ioannis P. Gerothanassis
Molecules 2024, 29(22), 5273; https://doi.org/10.3390/molecules29225273 - 7 Nov 2024
Cited by 1 | Viewed by 1368
Abstract
Carob leaves have gained attention for their bioactive properties and traditional medicinal uses, including as treatment for diabetes, digestive disorders, and microbial infections. The aim of this study was to explore the phytochemical composition of carob leaf acetone extracts using advanced spectroscopic techniques. [...] Read more.
Carob leaves have gained attention for their bioactive properties and traditional medicinal uses, including as treatment for diabetes, digestive disorders, and microbial infections. The aim of this study was to explore the phytochemical composition of carob leaf acetone extracts using advanced spectroscopic techniques. The combined use of heteronuclear nuclear magnetic resonance (NMR) experiments with 1D selective nuclear Overhauser effect spectroscopy (NOESY) offers detailed structural insights and enables the direct identification and quantification of key bioactive constituents in carob leaf extract. In particular, the NMR and mass spectrometry techniques revealed the presence of myricitrin as a predominant flavonoid, as well as a variety of glycosylated derivatives of myricetin and quercetin, in acetone extract. Furthermore, siliquapyranone and related gallotannins are essential constituents of the extract. The potent inhibitory effects of the carob leaf extract on Staphylococcus aureus (MIC = 50 μg mL−1) and a-glucosidase enzyme (IC50 = 67.5 ± 2.4 μg mL−1) were also evaluated. Finally, the antibacterial potency of carob leaf constituents were calculated in silico; digalloyl-parasorboside and gallic acid 4-O-glucoside exert a stronger bactericidal activity than the well-known myricitrin and related flavonoids. In summary, our findings provide valuable insights into the bioactive composition and health-promoting properties of carob leaves and highlight their potential for pharmaceutical and nutraceutical applications. Full article
Show Figures

Figure 1

13 pages, 2543 KiB  
Article
Discovery of Chemical Constituents with Anti-Atopic Dermatitis Properties from Aster koraiensis
by Ji-Young Kim, Hye-Min Kim, So-Ri Son, Hyo-Jin An and Dae Sik Jang
Molecules 2024, 29(21), 5002; https://doi.org/10.3390/molecules29215002 - 22 Oct 2024
Viewed by 1027
Abstract
Atopic dermatitis is an inflammatory dermatological disease characterized by persistent scratching and recurrent eczema. Due to the influence of environmental variables on the cause of this disease, there remains an ongoing interest in the development of therapeutic interventions. Previous studies have shown that [...] Read more.
Atopic dermatitis is an inflammatory dermatological disease characterized by persistent scratching and recurrent eczema. Due to the influence of environmental variables on the cause of this disease, there remains an ongoing interest in the development of therapeutic interventions. Previous studies have shown that various plants of the genus Aster and its derived phytochemicals possess efficacy in treating inflammatory-mediated diseases, including atopic dermatitis. Therefore, the present study investigated a potential compound with anti-atopic dermatitis properties derived from Aster koraiensis leaves, specifically targeting HaCaT keratinocyte cells. First, we isolated eleven compounds with three unknown compounds, including two polyacetylenes (1 and 3) and a benzoic acid derivative (4). The chemical structures of the isolates were elucidated by 1D and 2D NMR, specific rotation, acid hydrolysis, and quantum chemical calculations. Next, we treated an A. koraiensis extract and all isolates to HaCaT keratinocyte, followed by stimulation with TNF-α/IFN-γ. Among bioactive compounds, astersaponin J (7) exhibited a significant reduction in the levels of inflammatory cytokines associated with atopic dermatitis at a concentration of 2.5 μM. These findings suggest that chemicals obtained from an A. koraiensis 95% ethanol extract and derived compounds are potential therapeutics to help reduce the immunological response driven by atopic dermatitis. Full article
Show Figures

Graphical abstract

11 pages, 717 KiB  
Article
IL-6 Inhibitory Compounds from the Aerial Parts of Piper attenuatum and Their Anticancer Activities on Ovarian Cancer Cell Lines
by Hye Jin Kim, Lee Kyung Kim, Anna Kim, Khin Myo Htwe, Tae-Hwe Heo, Kye Jung Shin, Hee Jung Kim and Kee Dong Yoon
Molecules 2024, 29(13), 2981; https://doi.org/10.3390/molecules29132981 - 23 Jun 2024
Viewed by 1421
Abstract
Piper attenuatum Buch-Ham, a perennial woody vine belonging to the Piperaceae family, is traditionally used in Southeast Asia for treating various ailments such as malaria, headache, and hepatitis. This study described the isolation and identification of three new compounds, piperamides I-III (1 [...] Read more.
Piper attenuatum Buch-Ham, a perennial woody vine belonging to the Piperaceae family, is traditionally used in Southeast Asia for treating various ailments such as malaria, headache, and hepatitis. This study described the isolation and identification of three new compounds, piperamides I-III (13), which belong to the maleimide-type alkaloid skeletons, along with fifteen known compounds (418) from the methanol extract of the aerial parts of P. attnuatum. Their chemical structures were elucidated using spectroscopic methods (UV, IR, ESI-Q-TOF-MS, and 1D/2D NMR). All the isolates were evaluated for their ability to inhibit IL-6 activity in the human embryonic kidney-Blue™ IL-6 cell line and their cytotoxic activity against ovarian cancer cell lines (SKOV3/SKOV3-TR) and chemotherapy-resistant variants (cisplatin-resistant A2780/paclitaxel-resistant SKOV3). The compounds 3, 4, 11, 12, 17, and 18 exhibited IL-6 inhibition comparable to that of the positive control bazedoxifene. Notably, compound 12 displayed the most potent anticancer effect against all the tested cancer cell lines. These findings highlight the importance of researching the diverse activities of both known and newly discovered natural products to fully unlock their potential therapeutic benefits. Full article
Show Figures

Figure 1

19 pages, 2300 KiB  
Article
Chemical Composition, Nutritional, and Biological Properties of Extracts Obtained with Different Techniques from Aronia melanocarpa Berries
by Alessandra Piras, Silvia Porcedda, Antonella Smeriglio, Domenico Trombetta, Mariella Nieddu, Franca Piras, Valeria Sogos and Antonella Rosa
Molecules 2024, 29(11), 2577; https://doi.org/10.3390/molecules29112577 - 30 May 2024
Cited by 4 | Viewed by 1923
Abstract
This study investigates the chemical composition, nutritional, and biological properties of extracts obtained from A. melanocarpa berries using different extraction methods and solvents. Hydrodistillation and supercritical fluid extraction with CO2 allowed us to isolate fruit essential oil (HDEX) and fixed [...] Read more.
This study investigates the chemical composition, nutritional, and biological properties of extracts obtained from A. melanocarpa berries using different extraction methods and solvents. Hydrodistillation and supercritical fluid extraction with CO2 allowed us to isolate fruit essential oil (HDEX) and fixed oil (SFEEX), respectively. A phenol-enriched extract was obtained using a mild ultrasound-assisted maceration with methanol (UAMM). The HDEX most abundant component, using gas chromatography-mass spectrometry (GC/MS), was italicene epoxide (17.2%), followed by hexadecanoic acid (12.4%), khusinol (10.5%), limonene (9.7%), dodecanoic acid (9.7%), and (E)-anethole (6.1%). Linoleic (348.9 mg/g of extract, 70.5%), oleic (88.9 mg/g, 17.9%), and palmitic (40.8 mg/g, 8.2%) acids, followed by α-linolenic and stearic acids, were the main fatty acids in SFEEX determined using high-performance liquid chromatography coupled with a photodiode array detector and an evaporative light scattering detector (HPLC-DAD/ELSD). HPLC-DAD analyses of SFEEX identified β-carotene as the main carotenoid (1.7 mg/g), while HPLC with fluorescence detection (FLU) evidenced α-tocopherol (1.2 mg/g) as the most abundant tocopherol isoform in SFEEX. Liquid chromatography-electrospray ionization-MS (LC-ESI-MS) analysis of UAMM showed the presence of quercetin-sulfate (15.6%, major component), malvidin 3-O-(6-O-p-coumaroyl) glucoside-4-vinylphenol adduct (pigment B) (9.3%), di-caffeoyl coumaroyl spermidine (7.6%), methyl-epigallocatechin (5.68%), and phloretin (4.1%), while flavonoids (70.5%) and phenolic acids (23.9%) emerged as the most abundant polyphenol classes. UAMM exerted a complete inhibition of the cholesterol oxidative degradation at 140 °C from 75 μg of extract, showing 50% protection at 30.6 μg (IA50). Furthermore, UAMM significantly reduced viability (31–48%) in A375 melanoma cells in the range of 500–2000 μg/mL after 96 h of incubation (MTT assay), with a low toxic effect in normal HaCaT keratinocytes. The results of this research extend the knowledge of the nutritional and biological properties of A. melanocarpa berries, providing useful information on specific extracts for potential food, cosmetic, and pharmaceutical applications. Full article
Show Figures

Graphical abstract

13 pages, 23994 KiB  
Article
Phytochemical and Micro-Morphological Characterization of Atraphaxis pyrifolia Bunge Growing in the Republic of Kazakhstan
by Alima Abilkassymova, Raushan Kozykeyeva, Jennyfer Andrea Aldana-Mejía, Sebastian John Adams, Ubaidilla Datkhayev, Aknur Turgumbayeva, Kulpan Orynbassarova, Seethapathy G. Saroja, Ikhlas A. Khan and Samir A. Ross
Molecules 2024, 29(4), 833; https://doi.org/10.3390/molecules29040833 - 13 Feb 2024
Cited by 3 | Viewed by 1662
Abstract
Atraphaxis pyrifolia is a native species of Central Asia, known for curing several disorders. The species has little knowledges about its chemical composition and any information about its morphological characteristics despite its importance in traditional Asian medicine. This is one of the first [...] Read more.
Atraphaxis pyrifolia is a native species of Central Asia, known for curing several disorders. The species has little knowledges about its chemical composition and any information about its morphological characteristics despite its importance in traditional Asian medicine. This is one of the first approaches to the phytochemical and morphological characterization of this species. Micro-morphology was performed on the stem, and leaf parts of this plant to profile the morpho-anatomical characters using brightfield, fluorescence, polarized and scanning electron microscopy. Leaves were extracted with hexane and methanol. The hexane extract was analyzed using GC-MS analysis revealing the major presence of γ-sitosterol and nonacosane. The methanolic extract was submitted to Vacuum Liquid Chromatography and Sephadex LH-20. HPTLC, HR-ESI-MS and NMR techniques were used to identify the main compounds. Four glycosylated flavonoids were isolated: 8-O-acetyl-7-O-methyl-3-O-α-l-rhamnopyranosylgossypetin (Compound 1), and 7-O-methyl-3-O-α-l-rhamnopyranosylgossypetin (Compound 3), and two other compounds reported for the first time in the literature (Compounds 2 and 4). The findings presented herein furnish pertinent information essential for the identification and authentication of this medicinal plant. Such insights are invaluable for facilitating robust quality control measures and serve as a foundational framework for subsequent endeavours in metabolic, pharmacological, and taxonomical analyses. Full article
Show Figures

Figure 1

14 pages, 1309 KiB  
Article
In Vitro Assessment of the Antidiabetic and Anti-Inflammatory Potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum Extracts Processed Using Membrane Technologies
by Elena Neagu, Gabriela Paun, Camelia Albu, Oana Teodora Apreutesei and Gabriel Lucian Radu
Molecules 2023, 28(20), 7156; https://doi.org/10.3390/molecules28207156 - 18 Oct 2023
Cited by 4 | Viewed by 2355
Abstract
Recently, there has been increased interest in the discovery of new natural herbal remedies for treating diabetes and inflammatory diseases. In this context, this work analyzed the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum herbs, which have [...] Read more.
Recently, there has been increased interest in the discovery of new natural herbal remedies for treating diabetes and inflammatory diseases. In this context, this work analyzed the antidiabetic and anti-inflammatory potential of Artemisia absinthium, Artemisia vulgaris and Trigonella foenum-graecum herbs, which have been studied less from this point of view. Therefore, extracts were prepared and processed using membrane technologies, micro- and ultrafiltration, to concentrate the biologically active principles. The polyphenol and flavone contents in the extracts were analyzed. The qualitative analysis of the polyphenolic compounds was performed via HPLC, identifying chlorogenic acid, rosmarinic acid and rutin in A. absinthium; chlorogenic acid, luteolin and rutin in A. vulgaris; and genistin in T. foenum-graecum. The antidiabetic activity of the extracts was analyzed by testing their ability to inhibit α-amylase and α-glucosidase, and the anti-inflammatory activity was analyzed by testing their ability to inhibit hyaluronidase and lipoxygenase. Thus, the concentrated extracts of T. foenum-graecum showed high inhibitory activity on a-amylase—IC50 = 3.22 ± 0.3 μg/mL—(compared with acarbose—IC50 = 3.5 ± 0.18 μg/mL) and high inhibitory activity on LOX—IC50 = 19.69 ± 0.52 μg/mL (compared with all standards used). The concentrated extract of A. vulgaris showed increased α-amylase inhibition activity—IC50 = 8.57 ± 2.31 μg/mL—compared to acarbose IC50 = 3.5 ± 0.18 μg/mL. The concentrated extract of A. absinthium showed pronounced LOX inhibition activity—IC50 = 19.71 ± 0.79 μg/mL—compared to ibuprofen—IC50 = 20.19 ± 1.25 μg/mL. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

23 pages, 3046 KiB  
Review
Goutweed (Aegopodium podagraria L.)—An Edible Weed with Health-Promoting Properties
by Kamila Dębia, Małgorzata Dzięcioł, Agnieszka Wróblewska and Katarzyna Janda-Milczarek
Molecules 2025, 30(7), 1603; https://doi.org/10.3390/molecules30071603 - 3 Apr 2025
Viewed by 646
Abstract
Goutweed (Aegopodium podagraria L.) is a species of medicinal perennial in the celery family (Apiaceae), also considered an edible plant with medicinal effects and high nutritional value. In traditional folk medicine, it was known as a remedy for gout (arthritis) and also used [...] Read more.
Goutweed (Aegopodium podagraria L.) is a species of medicinal perennial in the celery family (Apiaceae), also considered an edible plant with medicinal effects and high nutritional value. In traditional folk medicine, it was known as a remedy for gout (arthritis) and also used to relieve rheumatism or sciatica. The botanical characteristics, occurrence, nutritional composition, and traditional and present-day applications of this plant are discussed. Furthermore, the important specific plant metabolites including organic acids and their derivatives, flavonoids, coumarins, polyacetylenes and terpene components of essential oil are presented and their biological activity is described. The valuable medicinal properties of Aegopodium podagria L. include anti-inflammatory, antirheumatic, antioxidant, antibacterial, antifungal, diuretic, sedative and protective effects on the kidneys and liver. The aim of this paper was to describe, on the basis of the available literature, the chemical composition, bioactivity and health-promoting properties of this wild edible plant. The information obtained is described and summarized in tables. Full article
Show Figures

Figure 1

36 pages, 1094 KiB  
Review
Antioxidant Potential of Medicinal Plants in the Treatment of Scabies Infestation
by Marcin Wróblewski, Joanna Wróblewska, Jarosław Nuszkiewicz, Celestyna Mila-Kierzenkowska and Alina Woźniak
Molecules 2024, 29(22), 5310; https://doi.org/10.3390/molecules29225310 - 11 Nov 2024
Viewed by 4755
Abstract
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body’s physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes [...] Read more.
Oxidative stress, characterized by an overproduction of reactive oxygen species that overwhelm the body’s physiological defense mechanisms, is a key factor in the progression of parasitic diseases in both humans and animals. Scabies, a highly contagious dermatological condition caused by the mite Sarcoptes scabiei var. hominis, affects millions globally, particularly in developing regions. The infestation leads to severe itching and skin rashes, triggered by allergic reactions to the mites, their eggs, and feces. Conventional scabies treatments typically involve the use of scabicidal agents, which, although effective, are often associated with adverse side effects and the increasing threat of resistance. In light of these limitations, there is growing interest in the use of medicinal plants as alternative therapeutic options. Medicinal plants, rich in bioactive compounds with antioxidant properties, offer a promising, safer, and potentially more effective approach to treatment. This review explores the role of oxidative stress in scabies pathogenesis and highlights how medicinal plants can mitigate this by reducing inflammation and oxidative damage, thereby alleviating symptoms and improving patient outcomes. Through their natural antioxidant potential, these plants may serve as viable alternatives or complementary therapies in the management of scabies, especially in cases where resistance to conventional treatments is emerging. Full article
Show Figures

Figure 1

40 pages, 3756 KiB  
Review
3′-8″- Biflavones: A Review of Their Structural Diversity, Natural Occurrence, Role in Plants, Extraction and Identification
by Dunja Šamec, Iva Jurčević Šangut, Erna Karalija, Bojan Šarkanj, Bruno Zelić and Anita Šalić
Molecules 2024, 29(19), 4634; https://doi.org/10.3390/molecules29194634 - 29 Sep 2024
Cited by 1 | Viewed by 1287
Abstract
Dimeric forms of flavonoids, known as biflavonoids, are much less studied compared to monomeric forms. It is estimated that nearly 600 different natural biflavonoids have been described to date, containing various subtypes that can be subdivided according to the position of their combinations [...] Read more.
Dimeric forms of flavonoids, known as biflavonoids, are much less studied compared to monomeric forms. It is estimated that nearly 600 different natural biflavonoids have been described to date, containing various subtypes that can be subdivided according to the position of their combinations and the nature of the subunits. The group in which two monomers are linked by a 3′-8″-C atom includes the first isolated biflavonoid ginkgetin, derivatives of amentoflavone, and several other compounds. 3′-8″-biflavones recently attracted much attention as potential molecules with biological activity such as antiviral and antimicrobial activity and as effective molecules for the treatment of neurodegenerative and metabolic diseases and in cancer therapies. With the growing interest in them as pharmacologically active molecules, there is also increasing interest in finding new natural sources of 3′-8″-biflavones and optimizing methods for their extraction and identification. Herein, we have summarized the available data on the structural diversity, natural occurrence, role in plants, extraction, and identification of 3′-8″-biflavones. Full article
Show Figures

Figure 1

16 pages, 2519 KiB  
Review
Phytochemistry and Biological Profile of the Chinese Endemic Herb Genus Notopterygium
by Zhikang Tang, Renlin Zheng, Ping Chen and Liangchun Li
Molecules 2024, 29(14), 3252; https://doi.org/10.3390/molecules29143252 - 9 Jul 2024
Cited by 2 | Viewed by 1860
Abstract
Notopterygium, a plant genus belonging to the Apiaceae family, is utilized in traditional Chinese medicine for its medicinal properties. Specifically, the roots and rhizomes of these plants are employed in phytotherapy to alleviate inflammatory conditions and headaches. This review provides a concise [...] Read more.
Notopterygium, a plant genus belonging to the Apiaceae family, is utilized in traditional Chinese medicine for its medicinal properties. Specifically, the roots and rhizomes of these plants are employed in phytotherapy to alleviate inflammatory conditions and headaches. This review provides a concise overview of the existing information regarding the botanical description, phytochemistry, pharmacology, and molecular mechanisms of the two Notopterygium species: Notopterygium incisum and N. franchetii. More than 500 distinct compounds have been derived from these plants, with the root being the primary source. These components include volatile oils, coumarins, enynes, sesquiterpenes, organic acids and esters, flavonoids, and various other compounds. Research suggests that Notopterygium incisum and N. franchetii exhibit a diverse array of pharmacological effects, encompassing antipyretic, analgesic, anti-inflammatory, antiarrhythmic, anticoagulant, antibacterial, antioxidant, and anticancer properties on various organs such as the brain, heart, digestive system, and respiratory system. Building activity screening models based on the pharmacological effects of Notopterygium species, as well as discovering and studying the pharmacological mechanisms of novel active ingredients, will constitute the primary development focus of Notopterygium medicinal research in the future. Full article
Show Figures

Figure 1

Back to TopTop