GaN Heterostructure Devices: From Materials to Application, 2nd Edition

A special issue of Micromachines (ISSN 2072-666X). This special issue belongs to the section "D1: Semiconductor Devices".

Deadline for manuscript submissions: 28 February 2026 | Viewed by 347

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Optoelectronic Materials and Technology, Sun Yat-sen University, Guangzhou 510006, China
Interests: electronic device; biosensor; THz device
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Gallium nitride and its related compound semiconductor materials (AlN, AlGaN, InGaN, InN) and heterostructures (AlGaN/GaN, InGaN/GaN, AlInGaN/GaN, etc.) are wide-band semiconductor materials with unique characteristics. Their successful application in solid-state lighting, power electronic devices, RF devices, UV-LED, Micro-LED, and ultraviolet photodetectors has promoted the rapid development of gallium nitride-based materials and devices. Gallium nitride-based materials have also shown significant applicative potential in some interdisciplinary fields. For example, due to their chemical stability and biological compatibility, researchers have considered their application in the fields of biomedicine and brain neuroscience. This Special Issue will publish research papers and review articles that focus on recent advances in gallium nitride-based materials and devices, including the application of novel research within related fields.

Prof. Dr. Baijun Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Micromachines is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • GaN heterostructure
  • optoelectronic devices
  • electronic devices
  • biosensor
  • THz devices
  • MEMS devices

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 6694 KiB  
Article
Normally Off AlGaN/GaN MIS-HEMTs with Self-Aligned p-GaN Gate and Non-Annealed Ohmic Contacts via Gate-First Fabrication
by Yinmiao Yin, Qian Fan, Xianfeng Ni, Chao Guo and Xing Gu
Micromachines 2025, 16(4), 473; https://doi.org/10.3390/mi16040473 - 16 Apr 2025
Viewed by 260
Abstract
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching [...] Read more.
This study introduces an enhancement-mode AlGaN/GaN metal-insulator-semiconductor high-electron-mobility transistor (MIS-HEMT) featuring a self-aligned p-GaN gate structure, fabricated using a gate-first process. The key innovation of this work lies in simplifying the fabrication process by utilizing gate metallization for both electrical contact and etching mask functions, enabling precise self-alignment. A highly selective Cl2/N2/O2 inductively coupled plasma (ICP) etching process was optimized to etch the p-GaN layer in the access regions, with a selectivity ratio of 33:1 and minimal damage to the AlGaN barrier. Additionally, a novel, non-annealed ohmic contact formation technique was developed, leveraging ICP etching to create nitrogen vacancies that facilitate contact formation without requiring thermal annealing. This technique streamlines the process by combining ohmic contact formation and mesa isolation into a single lithographic step. Incorporating a SiNx gate dielectric layer led to a 4.5 V threshold voltage shift in the fabricated devices. The resulting devices exhibited improved electrical performance, including a wide gate voltage swing (>10 V), a high on/off current ratio (~107), and clear pinch-off characteristics. These results demonstrate the effectiveness of the proposed fabrication approach, offering significant improvements in process efficiency and manufacturability. Full article
Show Figures

Figure 1

Back to TopTop