Fracture Mechanics and Failure Analysis of Metallic Materials

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Failure Analysis".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 1404

Special Issue Editors


E-Mail
Guest Editor
Innovation Centre of Faculty of Mechanical Engineering, University of Belgrade, 11000 Belgrade, Serbia
Interests: welding; fracture mechanics; numerical simulations; fatigue; structural integrity

Special Issue Information

Dear Colleagues,

It is our pleasure to invite you to contribute to this Special Issue of Metals, titled “Fracture Mechanics and Failure Analysis of Metallic Materials”. As the title suggests, this Special Issue primarily deals with the application of fracture mechanics in investigating various failure mechanisms of metals. Additionally, other approaches to failure analysis, including experimental and numerical, are covered by this Special Issue.

This Special Issue will cover a wide range of topics, including failure mechanisms such as fatigue, corrosion, and wear; the fracture behaviour of metallic materials used in numerous industrial applications (mechanical, civil, chemical, aerospace, biomedical engineering, etc.); and, of course, the use of fracture mechanics parameters and tools in both theoretical and practical terms.

Submitted contributions should focus on material characterisation and methods of analysing the causes and risks of failure, for the purpose of improving the existing design solutions, as well as developing new ones, for various components and/or equipment.

Dr. Simon A. Sedmak
Prof. Dr. Aleksandar S. Sedmak
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • fracture mechanics
  • failure analysis
  • welding
  • risk analysis
  • finite element method
  • fatigue
  • corrosion
  • fracture behaviour
  • material characterisation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

12 pages, 2287 KiB  
Article
Fracturing in 14MoV6-3 Steel Weld Joints—Including Base Metals—After a Short Time in Service
by Esmail Ali Salem Ahmed, Nenad Radović, Dragomir Glišić, Stefan Dikić, Nikola Milovanović, Mirjana Opačić and Jasmina Lozanović
Metals 2025, 15(5), 483; https://doi.org/10.3390/met15050483 - 25 Apr 2025
Viewed by 122
Abstract
In order to establish the influence of prolonged exposure to high temperatures on 14MoV6-3 steel, three different weld joints were designed. New-to-new material, new-to-used material, and used-to-used material joints were welded using two welding technologies—GTAW and a combination of GTAW + MMA. The [...] Read more.
In order to establish the influence of prolonged exposure to high temperatures on 14MoV6-3 steel, three different weld joints were designed. New-to-new material, new-to-used material, and used-to-used material joints were welded using two welding technologies—GTAW and a combination of GTAW + MMA. The weldments were tested by means of microstructure and tensile testing. The results showed that in all weldments, a fracture occurred in the base metal. Also, in the case of the new-to-used welded sample, the fracture always occurred in the used base metal. Since both materials have the same chemical composition, the difference in microstructure was related to long exposure to high temperatures. New steel has a considerably smaller grain size, while the used material underwent grain growth coupled with carbide coarsening, which decreased its strength. The yield strength (YS) of the new material was higher than the YS of the used material, which exhibited similar values in the used base metal and both weldments. It can be assumed that, since deformation starts in the area with the lowest yield point, the used material is the critical place in a given weldment. Therefore, the accurate extent of strength decrease cannot be evaluated based on the testing of new material, i.e., there is a need to reconsider the traditional qualifications of welding technology. Full article
(This article belongs to the Special Issue Fracture Mechanics and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

16 pages, 11126 KiB  
Article
Fracture and Fatigue Crack Growth Behaviour of A516 Gr 60 Steel Welded Joints
by Nikola Kostić, Ivica Čamagić, Aleksandar Sedmak, Milivoje Jovanović, Zijah Burzić, Tamara Golubović, Simon Sedmak and Igor Martić
Metals 2024, 14(12), 1447; https://doi.org/10.3390/met14121447 - 17 Dec 2024
Viewed by 824
Abstract
The facture and fatigue behaviour of welded joints made of A516 Gr 60 was analysed, bearing in mind their susceptibility to cracking, especially in the case of components which had been in service for a long time period. With respect to fracture, the [...] Read more.
The facture and fatigue behaviour of welded joints made of A516 Gr 60 was analysed, bearing in mind their susceptibility to cracking, especially in the case of components which had been in service for a long time period. With respect to fracture, the fracture toughness was determined for all three zones of a welded joint, the base metal (BM), heat-affected zone (HAZ) and weld metal (WM), by applying a standard procedure to evaluate KIc via based on JIc values (ASTM E1820). With respect to fatigue, the fatigue crack growth rates were determined according to the Paris law by the standard procedure (ASTM E647) to evaluate the behaviour of different welded joint zones under amplitude loading. The results obtained for A516 Gr. 60 structural steel showed why it is widely used in the case of static loads, since the minimum value of fracture toughness (185 MPa√m) provides relatively large critical crack lengths, whereas its behaviour under amplitude loading indicated a need for further improvement in WM and HAZ, since the crack growth rate reached values as high as 4.58 × 10−4 mm/cycle. In addition, risk-based analysis was applied to assess the structural integrity of a pressure vessel, including comparison with the high-strength low-alloy (HSLA) steel NIOVAL 50, proving once again its superior behaviour under static loading. Full article
(This article belongs to the Special Issue Fracture Mechanics and Failure Analysis of Metallic Materials)
Show Figures

Figure 1

Back to TopTop