Surface Engineering and Coating Tribology—2nd Edition

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Metal Failure Analysis".

Deadline for manuscript submissions: closed (20 November 2024) | Viewed by 3443

Special Issue Editor


E-Mail Website
Guest Editor
Mechanical Engineering Department, Memorial University of Newfoundland, St John's, NL A1B 3X5, Canada
Interests: surface engineering; coating tribology; mechanical properties; composite
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The progressive wear of moving parts and components under operation conditions results in a decline in performance, efficiency, and functions. Damaged components need to be repaired or replaced with new ones, which requires temporarily shutting down the machine or the entire technological process.

Meanwhile, global industry is constantly seeking to improve the efficiency of technological processes and tools. The drive to increase efficiency across most industrial sectors contributes to ever more challenging material functionality. For example, in aero engines, the path to increased performance requires turbines to operate at higher temperatures, and the blades need to be able to withstand extreme conditions at the physical limits of conventional applied materials for that to be so. Therefore, there is a growing need to identify new and advanced structural and tool material options, as well as methods of their production and processing.

In this Special Issue of Metals, we welcome articles that focus on the relationships between the process, structure, properties, and tribological performance of metal-based coatings developed by various surface engineering processes. Your contribution to this Special Issue is highly valued and appreciated.

Dr. Sima A. Alidokht
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • surface engineering
  • coating
  • tribology
  • wear
  • friction

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

23 pages, 7411 KiB  
Review
Improvement of High Temperature Wear Resistance of Laser-Cladding High-Entropy Alloy Coatings: A Review
by Yantao Han and Hanguang Fu
Metals 2024, 14(9), 1065; https://doi.org/10.3390/met14091065 - 18 Sep 2024
Cited by 5 | Viewed by 3005
Abstract
As a novel type of metal material emerging in recent years, high-entropy alloy boasts properties such as a simplified microstructure, high strength, high hardness and wear resistance. High-entropy alloys can use laser cladding to produce coatings that exhibit excellent metallurgical bonding with the [...] Read more.
As a novel type of metal material emerging in recent years, high-entropy alloy boasts properties such as a simplified microstructure, high strength, high hardness and wear resistance. High-entropy alloys can use laser cladding to produce coatings that exhibit excellent metallurgical bonding with the substrate, thereby significantly improvement of the wear resistance of the material surface. In this paper, the research progress on improving the high-temperature wear resistance of high entropy alloy coatings (LC-HEACs) was mainly analyzed based on the effect of some added alloying elements and the presence of hard ceramic phases. Building on this foundation, the study primarily examines the impact of adding elements such as aluminum, titanium, copper, silicon, and molybdenum, along with hard ceramic particles like TiC, WC, and NbC, on the phase structure of coatings, high-temperature mechanisms, and the synergistic interactions between these elements. Additionally, it explores the potential of promising lubricating particles and introduces an innovative, highly efficient additive manufacturing technology known as extreme high-speed laser metal deposition (EHLMD). Finally, this paper summarizes the main difficulties involved in increasing the high-temperature wear resistance of LC-HEACs and some problems worthy of attention in the future development. Full article
(This article belongs to the Special Issue Surface Engineering and Coating Tribology—2nd Edition)
Show Figures

Figure 1

Back to TopTop