Structural Integrity of Lightweight Alloys

A special issue of Metals (ISSN 2075-4701). This special issue belongs to the section "Structural Integrity of Metals".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 553

Special Issue Editor


E-Mail Website
Guest Editor
Department of Mechanical Engineering, University of Coimbra, 3030-788 Coimbra, Portugal
Interests: fatigue behavior; additive manufacturing; multiaxial fatigue; damage accumulation; notch effect; low-cycle fatigue
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The structural integrity of lightweight alloys is a critical issue in modern engineering industries such as the automotive industry and aerospace. These alloys offer excellent strength-to-weight ratios that enable significant reductions in polluting gas emissions and fuel efficiency. However, their mechanical behavior in demanding applications remains challenging, particularly under cyclic loading.

This Special Issue aims to explore the latest advancements in the structural integrity of lightweight alloys. Innovative studies focused on alloy design, microstructure features, manufacturing processes, heat treatment routes, loading history, geometrical and size effects, and environmental conditions are welcome. This Special Issue will accept papers on various topics, including based on experimental characterization, numerical modeling or machine learning approaches. 

Dr. Ricardo Branco
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metals is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lightweight alloys
  • structural integrity
  • fatigue behavior
  • alloy design
  • microstructure features
  • manufacturing processes
  • heat treatment routes
  • loading history
  • geometrical and size effects
  • environmental conditions

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 5333 KiB  
Article
Structural Integrity and Life Assessment of Ti-6Al-4V Orthopaedic Implants
by Katarina Čolić, Svetlana M. Kostić, Simon Sedmak, Nenad Gubeljak and Aleksandar Grbović
Metals 2025, 15(3), 333; https://doi.org/10.3390/met15030333 - 19 Mar 2025
Viewed by 326
Abstract
This paper presents an experimental and numerical analysis of the mechanical behaviour of orthopaedic implants with crack-type defects, considering the principles and advantages of the modern X-FEM method, which was used due to limitations of traditional FEM in terms of crack growth simulation, [...] Read more.
This paper presents an experimental and numerical analysis of the mechanical behaviour of orthopaedic implants with crack-type defects, considering the principles and advantages of the modern X-FEM method, which was used due to limitations of traditional FEM in terms of crack growth simulation, especially for complex geometries. In X-FEM, the finite element space is enriched with discontinuity functions and asymptotic functions at the crack tip, which are integrated into the standard finite element approximation using the unity division property. Though rare, femoral component failures are well-documented complications that can occur after hip prosthetic implantation. Most stem fractures happen in the first third of the implant due to the loosening of the proximal stem and fixation of the distal stem, leading to bending and eventual fatigue failure. The main goal of this paper was to obtain accurate and representative models of such failures. Experimental analyses of the mechanical behaviour of implants subjected to physiological loads, according to relevant standards, using a new combined approach, including both experiments and numerical simulations was presented. The goal was to verify the numerical results and obtain a novel, effective methodology for assessing the remaining fatigue life of hip implants. For this purpose, the analysis of the influence of Paris coefficients on the total number of cycles was also considered. Hence, this simulation involved defining loads to closely mimic real-life scenarios, including a combination of activities such as ascending stairs, stumbling, and descending stairs. The tensile properties of the titanium alloy were experimentally determined, along with the Paris law coefficients C and m. The finite element software ANSYS 2022R2 version was used to develop and calculate the three-dimensional model with a crack, and the resulting stresses, stress intensity factors, and the number of cycles presented in the figures, tables, and diagrams. The results for the fatigue life of a partial hip implant subjected to various load cases indicated significant differences in behaviour, and this underscores the importance of analysing each case individually, as these loads are heavily influenced by each patient’s specific activities. It was concluded that the use of numerical methods enabled the preliminary analyses of the mechanical behaviour of implants under fatigue loading for several different load cases, and these findings can be effectively used to predict the possibility of Ti-6Al-4V implant failure under variable cyclic loads. Full article
(This article belongs to the Special Issue Structural Integrity of Lightweight Alloys)
Show Figures

Figure 1

Back to TopTop