materials-logo

Journal Browser

Journal Browser

Advances in Biomass-Based Materials and Their Applications (2nd Edition)

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Green Materials".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 3438

Special Issue Editor


E-Mail Website
Guest Editor
Egas Moniz Center for Interdisciplinary Research (CiiEM), Egas Moniz School of Health and Sciences, 2829-511 Caparica, Portugal
Interests: bioprocess engineering; fermentation technology; biomaterials; PHA; residual feedstocks; environmentally sustainable processes; microbial biotechnology; downstream processing
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the world faces a turning point where oil-based products need to find effective replacements, new strategies, in line with the UN 2030 Agenda for Sustainable Development, must be pursued. Biomass-based materials, which are, at their essence, products originating from renewable organic material, can provide an important contribution towards this goal. Many biomolecules present a wide variety of surface functional groups and have a high potential for environmentally friendly modification and chemical activation. Moreover, even low-processed biomass-based materials can find a wide range of day-to-day use in bulk applications in agriculture, construction, the environment, and industry.

This Special Issue in Materials, “Advances in Biomass-Based Materials and Their Applications”, intends to assemble manuscripts regarding safe and sustainable-by-design biomaterials, presenting innovative new methods, production routes, or breakthroughs regarding the characterization and applications of biomass-based materials such as—but not restricted to—additives, building blocks, biochemicals, biopolymers, catalysts, food packaging materials, sorbents, building materials, and high end-value bioproducts for the medical, pharmaceutical, and cosmetics markets. We thus invite you to submit your research in this field in the form of original research papers, reviews, or short communications.

Dr. Catarina Dias de Almeida
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biodegradable biomass-based materials
  • biomass-based building blocks
  • biomass-based catalysts
  • biomass-based materials
  • biorefinery
  • environmentally friendly processes
  • fermentation technology
  • safe and sustainable by design

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

20 pages, 8605 KiB  
Article
Effect of Bio-Cementation Level and Rainfall Intensity on Surface Erosion Resistance of Biotreated Slope Using PEICP Method
by Yuyuan Chen, Hemanta Hazarika and Nadella Marchelina
Materials 2025, 18(7), 1662; https://doi.org/10.3390/ma18071662 - 4 Apr 2025
Viewed by 275
Abstract
Biomineralization technology is a promising method for soil cementation, enhancing its mechanical properties. However, its application in mitigating slope surface erosion caused by rainfall has not been fully explored. This study experimentally examined the feasibility of using plant-based enzyme-induced carbonate precipitation (PEICP) to [...] Read more.
Biomineralization technology is a promising method for soil cementation, enhancing its mechanical properties. However, its application in mitigating slope surface erosion caused by rainfall has not been fully explored. This study experimentally examined the feasibility of using plant-based enzyme-induced carbonate precipitation (PEICP) to reduce slope surface rainfall erosion through simulated rainfall tests. The effects of biotreatment cycles (N) and rainfall intensity (Ri) on erosion resistance were evaluated. The results demonstrated that increasing the biotreatment cycles improved the bio-cementation level, as evidenced by enhanced surface strength, increased calcium carbonate content (CCC) and thicker crust layers. Specifically, as the biotreatment cycles (N) increased from 2 to 6, the crust layer thickness expanded from 5.2 mm to 15.7 mm, with surface strength rising from 38.3 kPa to 244.3 kPa. Likewise, the CCC increased significantly from 1.09% to 5.32%, further reinforcing the soil structure and enhancing erosion resistance. Slopes treated with six biotreatment cycles exhibited optimal erosion resistance across rainfall intensities ranging from 45 to 100 mm/h. Compared to untreated slopes, biotreated slopes showed significant reductions in soil loss, with a decrease to below 10% at N = 4 and near-complete erosion resistance at N = 6. These findings highlight the potential of PEICP technology for improving slope stability under rainfall conditions. Full article
Show Figures

Figure 1

14 pages, 7295 KiB  
Article
Polymerization of Poly(3,4-ethylenedioxythiophene) on Sulfated Cellulose Nanofiber and Its Conducting Property
by Naofumi Takahashi, Atsuya Ogo and Takeshi Shimomura
Materials 2025, 18(6), 1273; https://doi.org/10.3390/ma18061273 - 13 Mar 2025
Viewed by 434
Abstract
Recent research on incorporating biomass resources into functional polymers has garnered significant attention. Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) is the most commercially successful conducting polymer composed of over 70 wt% petroleum-derived PSS, which presents an opportunity for partial replacement with biomass-based resources. In this study, [...] Read more.
Recent research on incorporating biomass resources into functional polymers has garnered significant attention. Poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) (PEDOT:PSS) is the most commercially successful conducting polymer composed of over 70 wt% petroleum-derived PSS, which presents an opportunity for partial replacement with biomass-based resources. In this study, a complex of PEDOT and sulfated cellulose nanofiber (PEDOT:s-CNF) was synthesized, and the relationship between its conductivity and doping conditions was investigated. PEDOT was synthesized on s-CNF, which was used in place of PSS, and the results indicate that conductivity increases as PEDOT polymerization progresses; however, excessive polymerization reduces electrical conductivity. Based on X-ray photoelectron spectroscopy and zeta potential measurements, the doping concentration decreases as PEDOT polymerization progresses to an excess state. This decrease is attributed to the depletion of sulfate groups, which act as dopants on s-CNFs, occurring as a consequence of the addition of PEDOT monomers. Enhancing the degree of sulfate group substitution on s-CNFs and incorporating additional dopants containing sulfonic groups improved conductivity. Specifically, adding p-toluenesulfonic acid (PTSA) as a dopant increased conductivity, reaching approximately 10 mS cm−1. However, at higher PTSA concentrations, the strong acidity of sulfonic groups reduced the degree of sulfate group dissociation, leading to a decline in doping efficiency. Full article
Show Figures

Graphical abstract

23 pages, 2691 KiB  
Article
Production and Quality Assessment of Fertilizer Pellets from Compost with Sewage Sludge Ash (SSA) Addition
by Paweł Cwalina, Sławomir Obidziński, Aneta Sienkiewicz, Małgorzata Kowczyk-Sadowy, Jolanta Piekut, Ewelina Bagińska and Jacek Mazur
Materials 2025, 18(5), 1145; https://doi.org/10.3390/ma18051145 - 4 Mar 2025
Viewed by 804
Abstract
This article examines the process of pressure agglomeration of garden waste compost mixed with sewage sludge ash (SSA) to produce granulated fertilizer material, using a flat die rotating compaction roller system. The study evaluated the effects of adding SSA at mass fractions of [...] Read more.
This article examines the process of pressure agglomeration of garden waste compost mixed with sewage sludge ash (SSA) to produce granulated fertilizer material, using a flat die rotating compaction roller system. The study evaluated the effects of adding SSA at mass fractions of 0%, 10%, 20%, 30%, 40%, and 50% on the process of pelleting and the quality of pellets. Increasing the SSA content from 0% to 50% reduced the power demand of the pellet mill by 13.5% (from 4.92 kW to 4.25 kW), decreased the kinetic strength of the pellets by 0.7% (from 98.21% to 97.56%), and slightly increased the pellet density, by 2.6% (from 1641.17 kg·m−3 to 1684.09 kg·m−3). The high density of the pellets, i.e., over 1600 kg·m−3, indicates that they are of market quality. A chemical analysis revealed that SSA addition positively influenced fertilizer properties. A higher SSA content (up to 50%) decreased the nitrogen content (1.4% to 0.73%) but significantly increased the phosphorus content (0.32% to 2.67%). The potassium content remained stable, at approximately 1.3%. The process of co-pelleting also diluted the heavy metals present in SSA, reducing the final product’s lead and cadmium levels to meet the standards set for fertilizers. Although the SSA contained high levels of heavy metals (lead: 93.89 mg·kgd.m.−1, cadmium: 11.28 mg·kgd.m.−1), these elements were not detected in the compost. Co-pelleting of compost and SSA produces high-density, high-quality fertilizer pellets with favorable nutrient profiles and heavy metal contents, complying with regulatory standards. Moreover, by converting garden waste and SSA into valuable agricultural products, the process supports sustainable waste management. This study evaluated the impact of SSA additives on the composition and water absorption of the granulate, providing insights into its suitability as an eco-friendly fertilizer alternative and its potential implications for sustainable agricultural practices. Full article
Show Figures

Figure 1

19 pages, 13686 KiB  
Article
Sustainable Conversion of Biomass to Multiwalled Carbon Nanotubes and Carbon Nanochains
by Kevin R. McKenzie, Jr., Nathan A. Banek and Michael J. Wagner
Materials 2025, 18(5), 1022; https://doi.org/10.3390/ma18051022 - 26 Feb 2025
Viewed by 429
Abstract
The conversion of biochar, the low value byproduct of pyrolysis bio-oil production from biomass multi-walled carbon nanotubes (MWCNTs) and carbon nanochains (CNCs), is reported. It is shown that biomass can be converted to long (>30 µm) carbon nanotubes with an anomalously deep (>280 [...] Read more.
The conversion of biochar, the low value byproduct of pyrolysis bio-oil production from biomass multi-walled carbon nanotubes (MWCNTs) and carbon nanochains (CNCs), is reported. It is shown that biomass can be converted to long (>30 µm) carbon nanotubes with an anomalously deep (>280 nm) stacked-cup structure. A mechanism of the transformation that is consistent with previously reported graphitization of biochar, a “non-graphitizable” carbon, is proposed, suggesting the molten metal catalyst is absorbed into the biochar by capillary action, forming graphene walls as it percolates through pore structure. Graphite is formed when the diameter of the molten catalyst droplets is large (microns), while smaller droplets (submicron) form MWCNTs and still smaller (<100 nm) form CNCs. Branching in the biochar pore structure leads to subdivision of the catalyst droplets resulting in the progression from MWCNT to CNC formation. Very long MWCNTs (>50 µm) can be formed in the absence of CNCs by transforming lignite char rather than biochar, presumably due to the elimination of smaller branching pores during coalification. CNCs, in the absence of MWCNTs, can be formed in biochar by using low concentrations of catalyst nanoparticles formed by carbon thermal reduction of a metal salt during charring. The results presented suggest that developing methods to control the porosity of the char could yield the ability to rationally synthesize carbon nanotubes with control of length, breadth and wall thickness. Full article
Show Figures

Figure 1

16 pages, 3708 KiB  
Article
Exploitation of Perennial Plant Biomass for Particleboards Designed for Insulation Applications
by Danuta Martyniak, Marta Pędzik, Grzegorz Żurek, Karol Tomczak, Ryszard Gąsiorowski, Magdalena Komorowicz and Dominika Janiszewska-Latterini
Materials 2025, 18(2), 352; https://doi.org/10.3390/ma18020352 - 14 Jan 2025
Viewed by 686
Abstract
With rising demand for wood products and reduced wood harvesting due to the European Green Deal, alternative lignocellulosic materials for insulation are necessary. In this work, we manufactured reference particleboard from industrial particles and fifteen different board variants from alternative lignocellulosic plants material, [...] Read more.
With rising demand for wood products and reduced wood harvesting due to the European Green Deal, alternative lignocellulosic materials for insulation are necessary. In this work, we manufactured reference particleboard from industrial particles and fifteen different board variants from alternative lignocellulosic plants material, i.e., five types of perennial plant biomass in three substitutions: 30, 50 and 75% of their share in the board with a nominal density of 250 kg/m3. Within the analysis of manufactured boards, the mechanical, chemical and thermal properties were investigated—internal bond, formaldehyde emissions, thermal insulation, heat transfer coefficient and thermal conductivity. In the case of thermal conductivity, the most promising results from a practical point of view (W/mK < 0.07) were obtained with Sida hermaphrodita and Miscanthus, achieving the best results at 50% substitution. The lowest formaldehyde emissions were recorded for boards with Panicum virgatum and Miscanthus, highlighting their positive environmental performance. In terms of mechanical properties, the highest internal bond was noticed in particleboards with a 30% substitution of Spartina pectinata and Miscanthus. Research findings confirm the potential of perennial plants as a sustainable source of raw materials for insulation panel manufacturing. Despite needing improvements in mechanical properties, most notably internal bond strength, these plants offer an ecologically responsible solution aligned with global construction trends, thus lessening reliance on traditional wood products. Thus, long-term benefits may be realized through the strategic combination of diverse raw materials within a single particleboard. Full article
Show Figures

Figure 1

Other

Jump to: Research

50 pages, 3490 KiB  
Systematic Review
Recent Advances in Carbon-Based Sensors for Food and Medical Packaging Under Transit: A Focus on Humidity, Temperature, Mechanical, and Multifunctional Sensing Technologies—A Systematic Review
by Siting Guo, Iza Radecka, Ahmed M. Eissa, Evgeni Ivanov, Zlatka Stoeva and Fideline Tchuenbou-Magaia
Materials 2025, 18(8), 1862; https://doi.org/10.3390/ma18081862 - 18 Apr 2025
Viewed by 382
Abstract
All carbon-based sensors play a critical role in ensuring the sustainability of smart packaging while enabling real-time monitoring of parameters such as humidity, temperature, pressure, and strain during transit. This systematic review covers the literature between 2013 and 16 November 2024 in the [...] Read more.
All carbon-based sensors play a critical role in ensuring the sustainability of smart packaging while enabling real-time monitoring of parameters such as humidity, temperature, pressure, and strain during transit. This systematic review covers the literature between 2013 and 16 November 2024 in the Scopus, Web of Science, IEEE Xplore, and Wiley databases, focusing on carbon-based sensor materials, structural design, and fabrication technologies that contribute to maximizing the sensor performance and scalability with particular emphasis on food and pharmaceutical product packaging applications. After being subjected to the inclusion and exclusion criteria, 164 studies were included in this review. The results show that most humidity sensors are made using graphene oxide (GO), though there is some progress toward cellulose and cellulose-based materials. Graphene and carbon nanotubes (CNTs) are predominant in temperature and mechanical sensors. The application of composites with structural design (e.g., porous and 3D structures) significantly improves sensitivity, long-term stability, and multifunctionality, whereas manufacturing methods such as spray coating and 3D printing further drive production scalability. The transition from metal to carbon-based electrodes could also reduce the cost. However, the scalability, long-term stability, and real-world validation remain challenges to be addressed. Future research should further enhance the performance and scalability of carbon-based sensors through low-energy fabrication techniques and the development of sustainable advanced materials to provide solutions for practical applications in dynamic transportation environments. Full article
Show Figures

Figure 1

Back to TopTop