materials-logo

Journal Browser

Journal Browser

Special Issue "Light Alloys and High-Temperature Alloys (Volume II)"

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Metals and Alloys".

Deadline for manuscript submissions: 20 September 2023 | Viewed by 980

Special Issue Editor

State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China
Interests: light alloys (Al-, Mg-); Ni-based super alloys; high-entropy alloys; CALPHAD; phase-field modeling; machine learning; alloy design
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Light alloys (Al-, Mg-, and Ti-based) and high-temperature alloys are widely used as key engineering materials in both civil and military industries due to their excellent comprehensive properties and performance. To meet the growing demand for the properties/performance of the materials, there is a perpetual need to explore novel, light and high-temperature alloys. This Special Issue of Materials is accepting papers on any new progress/development in the fields of light and high-temperature alloys. Both research and review articles are welcome.

This Special Issue primarily covers all of the theoretical and experimental investigations into different types of light alloys, including Al-, Mg-, and Ti-based, and high-temperature alloys, including Ni-, Co-, Fe-, and Nb-based. Either the mechanical or functional behaviors at all length scales can be emphasized. Related topics, such as protective coatings on high-temperature alloys, metal matrix composites, and so on, also fall within the scope of this Special Issue. Moreover, research into new high-temperature alloys, i.e., high-entropy alloys or multi-principal element alloys, is also welcome.

Thank you very much, and I look forward to receiving your submission soon.

Prof. Dr. Lijun Zhang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2300 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • light alloys (Al-, Mg-, and Ti-based)
  • high-temperature alloys (Ni-, Co-, Fe-, and Nb-based)
  • high-entropy alloys
  • light/high-temperature alloy-based composites
  • microstructure
  • mechanical properties
  • corrosion and oxidation
  • phase equilibrium and diffusion
  • alloy design
  • integrated computational materials engineering

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Atomic-Scale Insights into the Deformation Mechanism of the Microstructures in Precipitation-Strengthening Alloys
Materials 2023, 16(5), 1841; https://doi.org/10.3390/ma16051841 - 23 Feb 2023
Viewed by 405
Abstract
Clarifying the deformation behaviors of microstructures could greatly help us understand the precipitation-strengthening mechanism in alloys. However, it is still a formidable challenge to study the slow plastic deformation of alloys at the atomic scale. In this work, the phase-field crystal method was [...] Read more.
Clarifying the deformation behaviors of microstructures could greatly help us understand the precipitation-strengthening mechanism in alloys. However, it is still a formidable challenge to study the slow plastic deformation of alloys at the atomic scale. In this work, the phase-field crystal method was used to investigate the interactions between precipitates, grain boundary, and dislocation during the deformation processes at different degrees of lattice misfits and strain rates. The results demonstrate that the pinning effect of precipitates becomes increasingly strong with the increase of lattice misfit at relatively slow deformation with a strain rate of 10−4. The cut regimen prevails under the interaction between coherent precipitates and dislocations. In the case of a large lattice misfit of 19.3%, the dislocations tend to move toward the incoherent phase interface and are absorbed. The deformation behavior of the precipitate-matrix phase interface was also investigated. Collaborative deformation is observed in coherent and semi-coherent interfaces, while incoherent precipitate deforms independently of the matrix grains. The faster deformations (strain rate is 10−2) with different lattice misfits all are characterized by the generation of a large number of dislocations and vacancies. The results contribute to important insights into the fundamental issue about how the microstructures of precipitation-strengthening alloys deform collaboratively or independently under different lattice misfits and deformation rates. Full article
(This article belongs to the Special Issue Light Alloys and High-Temperature Alloys (Volume II))
Show Figures

Figure 1

Article
Ti–15Zr and Ti–15Zr–5Mo Biomaterials Alloys: An Analysis of Corrosion and Tribocorrosion Behavior in Phosphate-Buffered Saline Solution
Materials 2023, 16(5), 1826; https://doi.org/10.3390/ma16051826 - 23 Feb 2023
Viewed by 431
Abstract
It is crucial for clinical needs to develop novel titanium alloys feasible for long-term use as orthopedic and dental prostheses to prevent adverse implications and further expensive procedures. The primary purpose of this research was to investigate the corrosion and tribocorrosion behavior in [...] Read more.
It is crucial for clinical needs to develop novel titanium alloys feasible for long-term use as orthopedic and dental prostheses to prevent adverse implications and further expensive procedures. The primary purpose of this research was to investigate the corrosion and tribocorrosion behavior in the phosphate buffered saline (PBS) of two recently developed titanium alloys, Ti–15Zr and Ti–15Zr–5Mo (wt.%) and compare them with the commercially pure titanium grade 4 (CP–Ti G4). Density, XRF, XRD, OM, SEM, and Vickers microhardness analyses were conducted to give details about the phase composition and the mechanical properties. Additionally, electrochemical impedance spectroscopy was used to supplement the corrosion studies, while confocal microscopy and SEM imaging of the wear track were used to evaluate the tribocorrosion mechanisms. As a result, the Ti–15Zr (α + α′ phase) and Ti–15Zr–5Mo (α″ + β phase) samples exhibited advantageous properties compared to CP–Ti G4 in the electrochemical and tribocorrosion tests. Moreover, a better recovery capacity of the passive oxide layer was observed in the studied alloys. These results open new horizons for biomedical applications of Ti–Zr–Mo alloys, such as dental and orthopedical prostheses. Full article
(This article belongs to the Special Issue Light Alloys and High-Temperature Alloys (Volume II))
Show Figures

Figure 1

Back to TopTop