materials-logo

Journal Browser

Journal Browser

Advances in New Alloys, Polymers and Composites for Biomedical Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Biomaterials".

Deadline for manuscript submissions: 20 August 2025 | Viewed by 6119

Special Issue Editors


E-Mail Website
Guest Editor

E-Mail Website
Guest Editor
Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Barcelona East School of Engineering (EEBE), Universitat Politècnica de Catalunya (UPC), 08019 Barcelona, Spain
Interests: biodegradable metals; biodegradable polymers; 3D printing; surface modification

E-Mail Website
Guest Editor
Bioengineering Institute of Technology, Facultad de Medicina y Ciencias de la Salud, c/Josep Trueta s7N, Sant Cugat del Vallés, 08195 Barcelona, Spain
Interests: orthodontics; wires; brackets; aligners

E-Mail Website
Guest Editor
Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milano, Italy
Interests: early treatment; sleep disorders; biomecanics; aligners; citotoxicity in orthodontics

Special Issue Information

Dear Colleagues,

The development of new alloys and composites is of utmost importance in medical sciences and specifically in dental sciences. Its relevance is related to its new clinical possibilities. However, the main concern in dentistry and specifically in orthodontics regarding these materials is the possible alteration of their mechanical behavior in the oral environment due to microbial contamination.

The main purpose of this Special Issue is to go deeper into the relationship of oral biofilm and the behavior of new metallic alloys and the composite resins.

The main topics related to this objective are as follows: The need to enhance the resilience of materials under the masticatory loads. To know the biocompatibility of metallic and composite resins that are commonly used in dentistry. To find materials that can be used as brackets, arches, and polyurethanes, with an antimicrobial effect under contaminated environments. To determine how the oral biofilm contaminations alter the mechanical properties of composite resins and metallic alloys. To determine the degree of released products from the wear of the metallic alloys and the degradation of the polyurethane of the composite aligners.

Prof. Dr. Javier Gil
Dr. Marta Pegueroles
Prof. Dr. Andreu Puigdollers
Prof. Dr. Alberto Caprioglio
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • oral biofilm
  • antimicrobial effect
  • new orthodontic alloys
  • new orthodontic polyurethanes
  • structural deterioration of alloys and composite aligners

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

16 pages, 19319 KiB  
Article
Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study
by Eugenia Baena, Nuria Escribano, Victoria Fuentes, Isabel Reche and Laura Ceballos
Materials 2025, 18(6), 1371; https://doi.org/10.3390/ma18061371 - 20 Mar 2025
Viewed by 1024
Abstract
The number of resin cements marketed for fiber post cementation has increased significantly. This study compared the push-out bond strength (PBS) of self-adhesive and universal resin cements used to lute fiber posts at 24 h and after 6 months of aging in artificial [...] Read more.
The number of resin cements marketed for fiber post cementation has increased significantly. This study compared the push-out bond strength (PBS) of self-adhesive and universal resin cements used to lute fiber posts at 24 h and after 6 months of aging in artificial saliva. Fiber posts were luted to eighty human roots endodontically treated with four self-adhesive/one-step resin cements, with one of them also used in combination with its appropriate tooth primer; one universal resin cement, applied as one-step or together with its corresponding universal adhesive (multi-step); and one adhesive/multi-step resin cement, as a control. After storage (24 h or 6 months), the interfaces were subjected to PBS tests and the data were analyzed by two-way ANOVA and Tukey and Student’s t-tests (p < 0.05 defined as statistical significance). The results showed that Scotchbond Universal Plus + RelyX Universal attained statistically higher values at 24 h and 6 months. At 24 h, all resin cements yielded similar PBS to root dentin, while at 6 months, NormoCem obtained the lowest PBS. Storage for 6 months significantly decreased PBS for NormoCem and Multilink Automix. Root section did not influence PBS regardless of storage time. It was concluded that PBS is resin cement dependent. The universal resin cement, RelyX Universal, applied in combination with Scotchbond Universal Plus adhesive, obtained a higher and more stable PBS than the other resin cements tested. Full article
Show Figures

Figure 1

25 pages, 26496 KiB  
Article
Antibacterial Properties of PMMA/ZnO(NanoAg) Coatings for Dental Implant Abutments
by Ana Maria Gianina Rehner (Costache), Dana-Ionela Tudorache, Alexandra Cătălina Bîrcă, Adrian Ionuț Nicoară, Adelina-Gabriela Niculescu, Alina Maria Holban, Ariana Hudiță, Florentina Cornelia Bîclesanu, Paul Cătălin Balaure, Anna Maria Pangică, Alexandru Mihai Grumezescu and George-Alexandru Croitoru
Materials 2025, 18(2), 382; https://doi.org/10.3390/ma18020382 - 15 Jan 2025
Viewed by 1352
Abstract
Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide–silver composite nanoparticles, layered to Ti6Al4V–titanium alloy substrates. The [...] Read more.
Infections continue to pose significant challenges in dentistry, necessitating the development of innovative solutions that can effectively address these issues. This study focuses on creating coatings made from polymethyl methacrylate (PMMA) enriched with zinc oxide–silver composite nanoparticles, layered to Ti6Al4V–titanium alloy substrates. The application of these materials aims to create a solution for the abutments utilized in complete dental implant systems, representing the area most susceptible to bacterial infections. The nanoparticles were synthesized using a hydrothermal method, optimized through specific temperature and pressure parameters to achieve effective morphologies and sizes that enhance antibacterial efficacy. The layers were applied to the titanium substrate using the spin coating technique, chosen for its advantages and compatibility with the materials involved. Comprehensive analyses were conducted on the antimicrobial powders, including X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. Furthermore, the PMMA-based coatings incorporating antimicrobial nanoparticles were evaluated to ensure uniformity and homogeneity across the titanium alloy surface by IR mapping and SBF immersion–SEM analysis. The antimicrobial activity of the samples was demonstrated with impressive results against Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans, as assessed through biofilm modulation studies. The biocompatibility of the samples was validated through in vitro cell-based assays, which demonstrated excellent compatibility between PMMA-based coatings and human preosteoblasts, confirming their potential suitability for future use in dental implants. Full article
Show Figures

Figure 1

20 pages, 10103 KiB  
Article
Degradation Behavior of Coated Metallic Stents: Influence of In Vitro Fluid-Dynamic Biostability Testing Conditions
by Muhammad Saqib, Natalia Beshchasna, Gianaurelio Cuniberti and Joerg Opitz
Materials 2025, 18(1), 46; https://doi.org/10.3390/ma18010046 - 26 Dec 2024
Viewed by 787
Abstract
Coated metallic stents are the next generation of metallic stents with improved surface properties. To evaluate the degradation behavior of stents in vitro, different in vitro degradation models can be applied: (i) static immersion test: degradation under static fluid condition, (ii) fluid dynamic [...] Read more.
Coated metallic stents are the next generation of metallic stents with improved surface properties. To evaluate the degradation behavior of stents in vitro, different in vitro degradation models can be applied: (i) static immersion test: degradation under static fluid condition, (ii) fluid dynamic test: degradation under flowing fluid, and (iii) electrochemical corrosion test: degradation under the influence of electric potential. During these experimental procedures, stents interact with the simulated blood plasma, and degradation products are formed in the form of depositions on the stent surface, likewise in vivo experiments. These deposited crystals act as a hindrance to the application of important characterization techniques (e.g., mass loss measurement for the calculation of corrosion rate and examining the adhesion of the coating to metallic stents after fluid dynamic exposure). Therefore, to better characterize the coatings, the removal of these depositions is significant. In this work, we investigate the influence of in vitro test conditions in fluid dynamic biostability tests on the biostability of titanium oxynitride (TiOXNY) coated stainless steel stents by adapting various fluid dynamic experimental parameters. The experimental conditions are based on modification in the components of fluid dynamic setup (e.g., tubings), simulated body fluid (SBF), with and without Ca++ and Mg++ ions, and the cleaning procedure (use of water, acetone, and isopropanol). Four different experiments were conducted under various experimental parameter sets. SEM and EDX measurements were used for the identification of degradation products after each experiment. This study highlights the importance of optimized experimental conditions showing negligible depositions when utilizing Puriflex tubing or a comparable artificial vessel, SBF devoid of Ca++ and Mg++ ions, and performing sample cleaning with distilled water in an ultrasonic bath. The presented conditions were optimized for titanium oxynitride coated samples. A similar approach could be applied to other samples with or without some small variation. Full article
Show Figures

Figure 1

12 pages, 2749 KiB  
Article
Comparison of Fracture Strength of Milled and 3D-Printed Crown Materials According to Occlusal Thickness
by Yeseul Park, Jimin Kim, You-Jung Kang, Eun-Young Shim and Jee-Hwan Kim
Materials 2024, 17(18), 4645; https://doi.org/10.3390/ma17184645 - 22 Sep 2024
Cited by 3 | Viewed by 2045
Abstract
This study aimed to measure the fracture strengths and hardness of final restorative milled and 3D-printed materials and evaluate the appropriate crown thickness for their clinical use for permanent prosthesis. One type of milled material (group M) and two types of 3D-printed materials [...] Read more.
This study aimed to measure the fracture strengths and hardness of final restorative milled and 3D-printed materials and evaluate the appropriate crown thickness for their clinical use for permanent prosthesis. One type of milled material (group M) and two types of 3D-printed materials (groups P1 and P2) were used. Their crown thickness was set to 0.5, 1.0, and 1.5 mm for each group, and the fracture strength was measured. Vickers hardness was measured and analyzed to confirm the hardness of each material. Scanning electron microscopy was taken to observe the surface changes of the 3D-printed materials under loads of 900 and 1500 N. With increased thickness, the fracture strength significantly increased for group M but significantly decreased for group P1. For group P2, the fracture strengths for the thicknesses of 0.5 mm and 1.5 mm significantly differed, but that for 1.0 mm did not differ from those for other thicknesses. The hardness of group M was significantly higher than that of groups P1 and P2. For all thicknesses, the fracture strength was higher than the average occlusal force for all materials; however, an appropriate crown thickness is required depending on the material and component. Full article
Show Figures

Graphical abstract

Review

Jump to: Research

59 pages, 14760 KiB  
Review
The Recent Developments of Thermomechanical Processing for Biomedical Mg Alloys and Their Clinical Applications
by Hui Zhao, Jing Cheng, Chaochao Zhao, Min Wen, Rui Wang, Di Wu, Zhaoying Wu, Fang Yang and Liyuan Sheng
Materials 2025, 18(8), 1718; https://doi.org/10.3390/ma18081718 - 9 Apr 2025
Viewed by 236
Abstract
Magnesium (Mg) alloys have gained much attention for biomedical applications, due to their attractive properties, such as high specific strength, low density, low elasticity modulus, high damping capacity, biodegradation, and relatively good cytocompatibility. However, the biomedical use of Mg alloys also faces several [...] Read more.
Magnesium (Mg) alloys have gained much attention for biomedical applications, due to their attractive properties, such as high specific strength, low density, low elasticity modulus, high damping capacity, biodegradation, and relatively good cytocompatibility. However, the biomedical use of Mg alloys also faces several challenges, primarily due to their low corrosion resistance and insufficient strength. Therefore, improving the strength and corrosion resistance of biomedical Mg alloys has become a critical issue. This review briefly summarizes the selection of appropriate alloying elements for biomedical Mg alloys, which is the fundamental factor in determining their microstructure, cytocompatibility, mechanical properties, and corrosion performance. It also discusses typical thermomechanical processing methods, including hot extrusion, hot rolling and hot forging, and examines the influence of deformation mode on microstructure, mechanical properties, and degradation behavior. Specifically, combining different thermomechanical processing methods could be an optimal choice, as it leverages the high efficiency and effectiveness of each method. Finally, the clinical application of biomedical Mg alloys in various fields are summarized and discussed to highlight their potential prospect and corresponding challenges. This review aims to provide insights for the rationale design and development of high-performance biomedical Mg alloys for widespread clinical applications. Full article
Show Figures

Figure 1

Back to TopTop