Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Overview
2.2. Animals
2.3. Surgical Procedure and Post-Surgery Care
2.4. Implants
2.5. Imaging
2.6. Statistics
3. Results
3.1. Radiological Evaluation
3.2. DXA Analysis
3.3. Animal Health and Welfare
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, J.; Qin, L.; Yang, K.; Ma, Z.; Wang, Y.; Cheng, L.; Zhao, D. Materials evolution of bone plates for internal fixation of bone fractures: A review. J. Mater. Sci. Technol. 2020, 36, 190–208. [Google Scholar] [CrossRef]
- Hak, D.J.; Banegas, R.; Ipaktchi, K.; Mauffrey, C. Evolution of plate design and material composition. Injury 2018, 49, S8–S11. [Google Scholar] [CrossRef] [PubMed]
- Hollensteiner, M.; Sandriesser, S.; Bliven, E.; von Rüden, V.; Augat, P. Biomechanics of Osteoporotic Fracture Fixation. Curr. Osteoporos. Rep. 2019, 17, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Haglin, J.M.; Eltorai, A.E.M.; Gil, J.A.; Marcaccio, S.E.; Botero-Hincapie, J.; Daniels, A.H. Patient-Specific Orthopaedic Implants. Orthop. Surg. 2016, 8, 417–424. [Google Scholar] [CrossRef] [PubMed]
- Shim, V.; Höch, A.; Grunert, R.; Peldschus, S.; Böhme, J. Development of a patient-specific finite element model for predicting implant failure in pelvic ring fracture fixation. Comput. Math. Methods Med. 2017, 2017, 9403821. [Google Scholar] [CrossRef] [PubMed]
- Hutchinson, D.J.; Granskog, V.; Kieseritzky, V.J.; Alfort, H.; Stenlund, P.; Zhang, Y.; Arner, M.; Håkansson, J.; Malkoch, M. Highly Customizable Bone Fracture Fixation through the Marriage of Composites and Screws. Adv. Funct. Mater. 2021, 31, 2105187. [Google Scholar] [CrossRef]
- Schwarzenberg, P.; Colding-Rasmussen, T.; Hutchinson, D.J.; Mischler, D.; Horstmann, P.; Petersen, M.M.; Jacobsen, S.; Pastor, T.; Malkoch, M.; Wong, C.; et al. Biomechanical performance of a novel light—Curable bone fixation technique. Sci. Rep. 2023, 13, 9339. [Google Scholar] [CrossRef] [PubMed]
- von Kieseritzky, J.; Alfort, H.; Granskog, V.; Hutchinson, D.; Stenlund, P.; Bogestål, Y.; Arner, M.; Håkansson, J.; Malkoch, M. DendroPrime as an adhesion barrier on fracture fixation plates: An experimental study in rabbits. J. Hand Surg. Eur. Vol. 2020, 45, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Neumeister, M.W.; Winters, J.N.; Maduakolum, E. Phalangeal and Metacarpal Fractures of the Hand: Preventing Stiffness. Plast. Reconstr. Surg. Glob. Open 2021, 9, e3871. [Google Scholar] [CrossRef] [PubMed]
- Schwarzenberg, P.; Colding-Rasmussen, T.; Hutchinson, D.J.; Garcia, J.S.J.; Granskog, V.; Petersen, M.M.; Pastor, T.; Weis, T.; Malkoch, M.; Tierp-Wong, C.N.E.; et al. Determination of the internal loads experienced by proximal phalanx fracture fi xations during rehabilitation exercises. Sec. Biomech. 2024, 12, 1388399. [Google Scholar] [CrossRef]
- Häger, C.; Biernot, S.; Buettner, M.; Glage, S.; Keubler, L.M.; Held, N.; Bleich, E.M.; Otto, K.; Müller, C.W.; Decker, S.; et al. The Sheep Grimace Scale as an indicator of post-operative distress and pain in laboratory sheep. PLoS ONE 2017, 12, e0175839. [Google Scholar] [CrossRef] [PubMed]
- AWIN. AWIN Welfare Assessment Protocol for Sheep. 2015. Available online: https://air.unimi.it/handle/2434/269114 (accessed on 10 July 2024).
- Bottlang, M.; Schemitsch, C.E.; Nauth, A.M.; Routt, M.J.; Egol, K.A.; Cook, G.E.M.; Schemitsch, E.H.M. Biomechanical concepts for fracture fixation. J. Orthop. Trauma 2015, 29, S28–S33. [Google Scholar] [CrossRef] [PubMed]
- Bottlang, M.; Doornink, J.; Lujan, T.J.; Fitzpatrick, D.C.; Marsh, J.L.; Augat, P.; von Rechenberg, B.; Lesser, M.; Madey, S.M. Effects of construct stiffness on healing of fractures stabilized with locking plates. J. Bone Joint Surg. Am. 2010, 92, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Augat, P.; Hast, M.W.; Schemitsch, G.B.; Heyland, M.; Trepczynski, A.; Borgiani, E.; Russow, G.; Märdian, S.; Duda, G.N.; Hollensteiner, M.; et al. Biomechanical models: Key considerations in study design. OTA Int. 2021, 4, e099. [Google Scholar] [CrossRef] [PubMed]
- Hart, N.H.; Nimphius, S.; Rantalainen, T.; Ireland, A.; Siafarikas, A.; Newton, R.U. Mechanical basis of bone strength: Influence of bone material, bone structure and muscle action. J. Musculoskelet. Neuronal Interact. 2017, 17, 114–139. [Google Scholar] [PubMed]
- Olson, S.A.; Marsh, J.L.; Anderson, D.D.; Latta Pe, L.L. Designing a biomechanics investigation: Choosing the right model. J. Orthop. Trauma 2012, 26, 672–677. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.; See, C.W.; Li, X.; Zhu, D. Orthopedic implants and devices for bone fractures and defects: Past, present and perspective. Eng. Regen. 2020, 1, 6–18. [Google Scholar] [CrossRef]
- Colding-Rasmussen, T.; Schwarzenberg, P.; Horstmann, P.F.; Ottesen, C.B.S.; Garcia, J.S.J.; Hutchinson, D.J.; Malkoch, M.; Petersen, M.M.; Varga, P.; Tierp-Wong, C.N.E. Biomechanical Variability and Usability of a Novel Customizable Fracture Fixation Technique. Bioengineering 2023, 10, 1146. [Google Scholar] [CrossRef] [PubMed]
- von Kieseritzky, J.; Nordström, J.; Arner, M. Reoperations and postoperative complications after osteosynthesis of phalangeal fractures: A retrospective cohort study. J. Plast. Surg. Hand Surg. 2017, 51, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Hoyt, B.W.; Pavey, G.J.; Pasquina, P.F.; Potter, B.K. Rehabilitation of Lower Extremity Trauma: A Review of Principles and Military Perspective on Future Directions. Curr. Trauma Rep. 2015, 1, 50–60. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Y.; Li, M.; Chen, D.; Tang, Y. Compliance of functional exercises in school-age children with limb fractures: Implication for nursing countermeasures. BMC Pediatr. 2022, 22, 133. [Google Scholar] [CrossRef] [PubMed]
- Zachwieja, E.; Butler, A.J.; Grau, L.C.; Summers, S.; Massel, D.; Orozco, F.; Hernandez, V.H. The association of mental health disease with perioperative outcomes following femoral neck fractures. J. Clin. Orthop. Trauma 2019, 10, S77–S83. [Google Scholar] [CrossRef] [PubMed]
- Petersen, M.M.; Nielsen, P.T.; Lauritzen, J.B.; Lund, B. Changes in bone mineral density of the proximal tibia after uncemented total knee arthroplasty: A 3-year follow-up of 25 knees. Acta Orthop. 1995, 66, 513–516. [Google Scholar] [CrossRef] [PubMed]
- de Koning, S.G.B.; de Winter, N.; Moosabeiki, V.; Mirzaali, M.J.; Berenschot, A.; Witbreuk, M.M.E.H.; Lagerburg, V. Design considerations for patient-specific bone fixation plates: A literature review. Med. Biol. Eng. Comput. 2023, 61, 3233–3252. [Google Scholar] [CrossRef] [PubMed]
- Raghoebar, I.I.; Dubois, L.; de Lange, J.; Schepers, T.; Griot, P.D.; Essig, H.; Rozema, F. The Effectiveness of Three-Dimensional Osteosynthesis Plates versus Conventional Plates for the Treatment of Skeletal Fractures: A Systematic Review and Meta-Analysis. J. Clin. Med. 2023, 12, 4661. [Google Scholar] [CrossRef] [PubMed]
- Ronca, A.; Guarino, V.; Raucci, M.G.; Salamanna, F.; Martini, L.; Zeppetelli, S.; Fini, M.; Kon, E.; Filardo, G.; Marcacci, M.; et al. Large defect-tailored composite scaffolds for in vivo bone regeneration. J. Biomater. Appl. 2014, 29, 715–727. [Google Scholar] [CrossRef] [PubMed]
- Christou, C.; Oliver, R.A.; Pelletier, M.H.; Walsh, W.R. Ovine model for critical-size tibial segmental defects. Comp. Med. 2014, 64, 377–385. [Google Scholar] [PubMed]
Sheep | Implant Configuration | 1-Week Failure Mode | Aftercare | |||
---|---|---|---|---|---|---|
CPT | LP | CPT | LP | Wooden block | Cast or bandage | |
A1 | 2 by 2 | Unicortical | Patch breakage (screw head) | No failure | Week 6–10 | Cast, week 0–6. Bandage, week 6–8. |
A2 | 2 by 2 | Unicortical | Patch breakage (midline) | No failure | Week 3–10 | Cast, week 0–3. Bandage, week 3–8. |
A3 | 2 by 2 | Unicortical | Patch breakage (midline) | Screw loosening | Week 4–16 | Cast, week 0–4. Bandage, week 4–8. |
A4 | 2 by 2 | Unicortical | Patch breakage (midline) | No failure | * | Cast, week 0–1 |
B1 | 3 by 3 | Bicortical | Patch breakage (midline) | No failure | Week 0–10 | Bandage, week 0–8 |
B2 | 3 by 3 | Bicortical | Patch breakage (midline) | No failure | Week 0–10 | Bandage, week 0–8 |
B3 | 3 by 3 | Bicortical | Patch breakage (midline and at screw heads) | No failure | Week 0–10 | Bandage, week 0–8 |
B4 | 3 by 3 | Bicortical | Patch breakage (midline) | No failure | Week 0–10 | Bandage, week 0–8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colding-Rasmussen, T.; Nikolaisen, N.K.; Horstmann, P.F.; Petersen, M.M.; Hutchinson, D.J.; Malkoch, M.; Jacobsen, S.; Tierp-Wong, C.N.E. Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model. Materials 2025, 18, 3359. https://doi.org/10.3390/ma18143359
Colding-Rasmussen T, Nikolaisen NK, Horstmann PF, Petersen MM, Hutchinson DJ, Malkoch M, Jacobsen S, Tierp-Wong CNE. Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model. Materials. 2025; 18(14):3359. https://doi.org/10.3390/ma18143359
Chicago/Turabian StyleColding-Rasmussen, Thomas, Nanett Kvist Nikolaisen, Peter Frederik Horstmann, Michael Mørk Petersen, Daniel John Hutchinson, Michael Malkoch, Stine Jacobsen, and Christian Nai En Tierp-Wong. 2025. "Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model" Materials 18, no. 14: 3359. https://doi.org/10.3390/ma18143359
APA StyleColding-Rasmussen, T., Nikolaisen, N. K., Horstmann, P. F., Petersen, M. M., Hutchinson, D. J., Malkoch, M., Jacobsen, S., & Tierp-Wong, C. N. E. (2025). Novel Customizable Fracture Fixation Technique vs. Conventional Metal Locking Plate: An Exploratory Comparative Study of Fixation Stability in an Experimental In Vivo Ovine Bilateral Phalangeal Fracture Model. Materials, 18(14), 3359. https://doi.org/10.3390/ma18143359