Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Microhardness Evaluation of Bar Samples Using Vickers Hardness Number (VHN)
3.2. SEM Analysis
3.2.1. Microhardness Indentation Imaging and Analysis
3.2.2. SEM Imaging of Unpolished and Polished ZirCAD Prime (I) Bar Samples
3.2.3. SEM Imaging of Unpolished and Polished CERCON ht ML (S) Bar Sample
3.2.4. SEM Imaging of Unpolished and Polished Katana ZIRCONIA YML (K) Bar Samples
3.2.5. SEM Imaging of Unpolished and Polished ZirCAD LT (IK) Bar Sample
3.3. Structural Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alqutaibi, A.Y.; Ghulam, O.; Krsoum, M.; Binmahmoud, S.; Taher, H.; Elmalky, W.; Zafar, M.S. Revolution of Current Dental Zirconia: A Comprehensive Review. Molecules 2022, 27, 1699. [Google Scholar] [CrossRef] [PubMed]
- Jakovac, M.; Klaser, T.; Radatović, B.; Skoko, Ž.; Pavić, L.; Žic, M. Surface Characterization and Conductivity of Two Types of Lithium-Based Glass Ceramics after Accelerating Ageing. Materials 2020, 13, 5632. [Google Scholar] [CrossRef] [PubMed]
- Labetić, A.; Klaser, T.; Skoko, Ž.; Jakovac, M.; Žic, M. Flexural Strength and Morphological Study of Different Multilayer Zirconia Dental Materials. Materials 2024, 17, 1143. [Google Scholar] [CrossRef] [PubMed]
- Kaizer, M.R.; Kolakarnprasert, N.; Rodrigues, C.; Chai, H.; Zhang, Y. Probing the Interfacial Strength of Novel Multi-Layer Zirconias. Dent. Mater. 2020, 36, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Branco, A.C.; Silva, R.; Santos, T.; Jorge, H.; Rodrigues, A.R.; Fernandes, R.; Bandarra, S.; Barahona, I.; Matos, A.P.A.; Lorenz, K.; et al. Suitability of 3D Printed Pieces of Nanocrystalline Zirconia for Dental Applications. Dent. Mater. 2020, 36, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Jakovac, M.; Klaser, T.; Bafti, A.; Skoko, Ž.; Pavić, L.; Žic, M. The Effect of Y3+ Addition on Morphology, Structure, and Electrical Properties of Yttria-Stabilized Tetragonal Zirconia Dental Materials. Materials 2022, 15, 1800. [Google Scholar] [CrossRef] [PubMed]
- Abualsaud, R.; Abussaud, M.; Assudmi, Y.; Aljoaib, G.; Khaled, A.; Alalawi, H.; Akhtar, S.; Matin, A.; Gad, M.M. Physiomechanical and Surface Characteristics of 3D-Printed Zirconia: An in Vitro Study. Materials 2022, 15, 6988. [Google Scholar] [CrossRef] [PubMed]
- Jakovac, M.; Klaser, T.; Radatović, B.; Bafti, A.; Skoko, Ž.; Pavić, L.; Žic, M. Impact of Sandblasting on Morphology, Structure and Conductivity of Zirconia Dental Ceramics Material. Materials 2021, 14, 2834. [Google Scholar] [CrossRef] [PubMed]
- Kontonasaki, E.; Rigos, A.E.; Ilia, C.; Istantsos, T. Monolithic Zirconia: An Update to Current Knowledge. Optical Properties, Wear, and Clinical Performance. Dent. J. 2019, 7, 90. [Google Scholar] [CrossRef] [PubMed]
- Kolakarnprasert, N.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. New Multi-Layered Zirconias: Composition, Microstructure and Translucency. Dent. Mater. 2019, 35, 797–806. [Google Scholar] [CrossRef] [PubMed]
- Cokic, S.M.; Vleugels, J.; Van Meerbeek, B.; Camargo, B.; Willems, E.; Li, M.; Zhang, F. Mechanical Properties, Aging Stability and Translucency of Speed-Sintered Zirconia for Chairside Restorations. Dent. Mater. 2020, 36, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Inokoshi, M.; Batuk, M.; Hadermann, J.; Naert, I.; Van Meerbeek, B.; Vleugels, J. Strength, Toughness and Aging Stability of Highly-Translucent Y-TZP Ceramics for Dental Restorations. Dent. Mater. 2016, 32, e327–e337. [Google Scholar] [CrossRef] [PubMed]
- Harada, K.; Raigrodski, A.J.; Chung, K.-H.; Flinn, B.D.; Dogan, S.; Mancl, L.A. A Comparative Evaluation of the Translucency of Zirconias and Lithium Disilicate for Monolithic Restorations. J. Prosthet. Dent. 2016, 116, 257–263. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lawn, B.R. Novel Zirconia Materials in Dentistry. J. Dent. Res. 2018, 97, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Almohammed, S.N.; Alshorman, B.; Abu-Naba’a, L.A. Mechanical Properties of Five Esthetic Ceramic Materials Used for Monolithic Restorations: A Comparative in Vitro Study. Ceramics 2023, 6, 1031–1049. [Google Scholar] [CrossRef]
- da Silva, L.H.; de Lima, E.; de Paula Miranda, R.B.; Favero, S.S.; Lohbauer, U.; Cesar, P.F. Dental Ceramics: A Review of New Materials and Processing Methods. Braz. Oral Res. 2017, 31, e58. [Google Scholar] [CrossRef] [PubMed]
- ASTM C1327-15; C28 Committee Test Method for Vickers Indentation Hardness of Advanced Ceramics. ASTM International: West Conshohocken, PA, USA, 2019.
- Diener, V.; Polychronis, G.; Erb, J.; Zinelis, S.; Eliades, T. Surface, Microstructural, and Mechanical Characterization of Prefabricated Pediatric Zirconia Crowns. Materials 2019, 12, 3280. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Sfikas, A.K.; Kamnis, S.; Tsolka, P.; Agathopoulos, S. Influence of Heat Treatment on the Microstructure and the Physical and Mechanical Properties of Dental Highly Translucent Zirconia. J. Adv. Prosthodont. 2022, 14, 96–107. [Google Scholar] [CrossRef] [PubMed]
- Montazerian, M.; Zanotto, E.D. Bioactive and Inert Dental Glass-Ceramics. J. Biomed. Mater. Res. A 2017, 105, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Barbosa de Sousa, F.; Tay, N.; Lang, T.S.; Kaixin, V.L.; Han, J.; Kilpatrick-Liverman, L.; Wang, W.; Lavender, S.; Pilch, S.; et al. Deformation Behavior of Normal Human Enamel: A Study by Nanoindentation. J. Mech. Behav. Biomed. Mater. 2020, 108, 103799. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-S.; Lee, J.-S. Comparison of Surface Topography and Roughness in Different Yttrium Oxide Compositions of Dental Zirconia after Grinding and Polishing. J. Adv. Prosthodont. 2021, 13, 258–267. [Google Scholar] [CrossRef] [PubMed]
- Bruhnke, M.; Awwad, Y.; Müller, W.D.; Beuer, F.; Schmidt, F. Mechanical Properties of New Generations of Monolithic, Multi-Layered Zirconia. Materials 2023, 16, 276. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N. Frequency-Related Viscoelastic Properties in High Translucent CAD-CAM Resin-Based Composites. J. Mech. Behav. Biomed. Mater. 2021, 118, 104427. [Google Scholar] [CrossRef] [PubMed]
- ISO 6507-1:2023; Metallic Materials—Vickers Hardness Test. Part 1: Test Method. ISO: Geneva, Switzerland, 2023.
- Koo, P.-J.; Lee, J.-H.; Ha, S.-R.; Seo, D.-G.; Ahn, J.-S.; Choi, Y.-S. Changes in the Properties of Different Zones in Multilayered Translucent Zirconia Used in Monolithic Restorations during Aging Process. J. Funct. Biomater. 2025, 16, 96. [Google Scholar] [CrossRef] [PubMed]
- Hofer, A.-K.; Rabitsch, J.; Jutrzenka-Trzebiatowska, D.; Hofstetter, C.; Gavalda-Velasco, I.; Schlacher, J.; Schwentenwein, M.; Bermejo, R. Effect of Binder System on the Thermophysical Properties of 3D-Printed Zirconia Ceramics. Int. J. Appl. Ceram. Technol. 2022, 19, 174–180. [Google Scholar] [CrossRef] [PubMed]
- Moqbel, N.M.; Al-Akhali, M.; Wille, S.; Kern, M. Influence of Aging on Biaxial Flexural Strength and Hardness of Translucent 3Y-TZP. Materials 2019, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- Harrer, W.; Schwentenwein, M.; Lube, T.; Danzer, R. Fractography of Zirconia-Specimens Made Using Additive Manufacturing (LCM) Technology. J. Eur. Ceram. Soc. 2017, 37, 4331–4338. [Google Scholar] [CrossRef]
- Guazzato, M.; Albakry, M.; Ringer, S.P.; Swain, M.V. Strength, Fracture Toughness and Microstructure of a Selection of All-Ceramic Materials. Part II. Zirconia-Based Dental Ceramics. Dent. Mater. 2004, 20, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Sen, N.; Isler, S. Microstructural, Physical, and Optical Characterization of High-Translucency Zirconia Ceramics. J. Prosthet. Dent. 2020, 123, 761–768. [Google Scholar] [CrossRef] [PubMed]
- Dimitriadis, K.; Constantinou, M.; Moschovas, D.; Constantinides, G.; Agathopoulos, S. Microstructural Features, Physicο-Mechanical Properties, and Wear Behavior of Dental Translucent Polychromic Multilayer Zirconia of Hybrid Composition Prepared by Milling Technology. J. Esthet. Restor. Dent. 2023, 35, 1121–1130. [Google Scholar] [CrossRef] [PubMed]
- Vardhaman, S.; Borba, M.; Kaizer, M.R.; Kim, D.K.; Zhang, Y. Wear Behavior and Microstructural Characterization of Translucent Multilayer Zirconia. Dent. Mater. 2020, 36, 1407–1417. [Google Scholar] [CrossRef] [PubMed]
- Preis, V.; Schmalzbauer, M.; Bougeard, D.; Schneider-Feyrer, S.; Rosentritt, M. Surface Properties of Monolithic Zirconia after Dental Adjustment Treatments and in Vitro Wear Simulation. J. Dent. 2015, 43, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Mitov, G.; Heintze, S.D.; Walz, S.; Woll, K.; Muecklich, F.; Pospiech, P. Wear Behavior of Dental Y-TZP Ceramic against Natural Enamel after Different Finishing Procedures. Dent. Mater. 2012, 28, 909–918. [Google Scholar] [CrossRef] [PubMed]
- Osman, R.B.; van der Veen, A.J.; Huiberts, D.; Wismeijer, D.; Alharbi, N. 3D-Printing Zirconia Implants; a Dream or a Reality? An in-Vitro Study Evaluating the Dimensional Accuracy, Surface Topography and Mechanical Properties of Printed Zirconia Implant and Discs. J. Mech. Behav. Biomed. Mater. 2017, 75, 521–528. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Han, J.-M.; Zheng, G.; Lin, H.; Bai, W.; Zhao, J.; Shen, Z. Fatigue Behaviours of the Zirconia Dental Restorations Prepared by Two Manufacturing Methods. Adv. Appl. Ceram. Struct. Funct. Bioceram. 2017, 116, 368–375. [Google Scholar] [CrossRef]
- Strasser, T.; Wertz, M.; Koenig, A.; Koetzsch, T.; Rosentritt, M. Microstructure, Composition, and Flexural Strength of Different Layers within Zirconia Materials with Strength Gradient. Dent. Mater. 2023, 39, 463–468. [Google Scholar] [CrossRef] [PubMed]
- Nakai, H.; Inokoshi, M.; Nozaki, K.; Komatsu, K.; Kamijo, S.; Liu, H.; Shimizubata, M.; Minakuchi, S.; Van Meerbeek, B.; Vleugels, J.; et al. Additively Manufactured Zirconia for Dental Applications. Materials 2021, 14, 3694. [Google Scholar] [CrossRef] [PubMed]
Specimen Designation | Manufacturer | Material | Multilayer Composition |
---|---|---|---|
I | Ivoclar Vivadent AG | ZirCAD Prime | 3Y-TZP-5Y-TZP |
S | Dentsply Sirona | CERCON ht ML | 3Y-TZP-5Y-TZP |
K | Kuraray Noritake | Katana ZIRCONIA YML | 3Y-TZP-5Y-TZP |
IK | Ivoclar Vivadent AG | ZirCAD LT | 3Y-TZP |
Layer Name | Designation |
---|---|
Incisal | 5Y-TZP |
Cervical | 3Y-TZP |
Transit layer | 3Y/5Y-TZP |
Material | 3Y-TZP | 3Y/5Y-TZP | 5Y-TZP |
---|---|---|---|
ZirCAD Prime | 0.43 | 0.45 | 0.43 |
CERCON ht ML | 0.49 | 0.45 | 0.54 |
Katana ZIRCONIA YML | 0.48 | 0.51 | 0.53 |
ZirCAD LT | 0.21 | - | - |
Sample | Phase | Polished | Unpolished | Change (%) |
---|---|---|---|---|
CERCON ht ML | c-ZrO2 (%) | 32.1 | 43.9 | −26.9 |
t-ZrO2 (%) | 58.1 | 56.1 | 3.6 | |
m-ZrO2 (%) | 9.8 | 0 | - | |
ZirCAD Prime | c-ZrO2 (%) | 31.8 | 53.5 | −40.6 |
t-ZrO2 (%) | 57.3 | 46.5 | 23.2 | |
m-ZrO2 (%) | 10.8 | 0 | - | |
Katana ZIRCONIA YML | c-ZrO2 (%) | 49.3 | 34.0 | 45.0 |
t-ZrO2 (%) | 39.9 | 66.0 | −39.6 | |
m-ZrO2 (%) | 10.8 | 0 | - | |
ZirCAD LT | c-ZrO2 (%) | 20.3 | 32.1 | −36.8 |
t-ZrO2 (%) | 74.4 | 67.9 | 9.6 | |
m-ZrO2 (%) | 5.3 | 0 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Labetić, A.; Klaser, T.; Skoko, Ž.; Jakovac, M.; Žic, M. Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness. Materials 2025, 18, 3380. https://doi.org/10.3390/ma18143380
Labetić A, Klaser T, Skoko Ž, Jakovac M, Žic M. Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness. Materials. 2025; 18(14):3380. https://doi.org/10.3390/ma18143380
Chicago/Turabian StyleLabetić, Andrea, Teodoro Klaser, Željko Skoko, Marko Jakovac, and Mark Žic. 2025. "Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness" Materials 18, no. 14: 3380. https://doi.org/10.3390/ma18143380
APA StyleLabetić, A., Klaser, T., Skoko, Ž., Jakovac, M., & Žic, M. (2025). Surface Hardness of Polished Dental Zirconia: Influence of Polishing and Yttria Content on Morphology, Phase Composition, and Microhardness. Materials, 18(14), 3380. https://doi.org/10.3390/ma18143380