Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Root Canal Treatment
2.2. Post Space Preparation
2.3. Specimen Preparation
2.4. Push-Out Test
2.5. Failure Mode
2.6. Statistical Analysis
3. Results
3.1. Push-Out Test
3.2. Failure Mode Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bernabe, E.; Marcenes, W.; Abdulkader, R.S.; Abreu, L.G.; Afzal, S.; Alhalaiqa, F.N.; Al-Maweri, S.; Alsharif, U.; Anyasodor, A.E.; Arora, A.; et al. Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2025, 405, 897–910. [Google Scholar] [CrossRef] [PubMed]
- Chirila, M.; Dimitriu, B.; Bartok, R.I.; Amza, O.; Serban, A.M.; Suciu, I. Fracture resistance of endodontically treated teeth restored with resin post reinforced with glass fiber. J. Med. Life 2021, 14, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Dutta, A.; Nadig, R.; Gowda, Y. To evaluate the fracture resistance of proclined endodontically treated teeth with different post and core systems: In vitro study. J. Conserv. Dent. 2020, 23, 233–239. [Google Scholar] [CrossRef] [PubMed]
- Samran, A.; Najjar, M.O.; Samran, A.; Al-Akhali, M.; Al-Maweri, S.A.; Özcan, M. Influence of different post luting cements on the fracture strength of endodontically treated teeth: An in vitro study. Eur. Endod. J. 2018, 3, 113–117. [Google Scholar] [CrossRef]
- Brignardello-Petersen, R. Post-retained single crowns placed in endodontically treated teeth with more than 50% of dental tissue remaining probably have a high survival after 7 years. J. Am. Dent. Assoc. 2017, 148, e204. [Google Scholar] [CrossRef]
- Naumann, M.; Schmitter, M.; Frankenberger, R.; Krastl, G. Ferrule Comes First. Post Is Second!” Fake News and Alternative Facts? A Systematic Review. J. Endod. 2018, 44, 212–219. [Google Scholar] [CrossRef]
- Mannocci, F.; Bhuva, B.; Roig, M.; Zarow, M.; Bitter, K. European Society of Endodontology position statement: The restoration of root filled teeth. Int. Endod. J. 2021, 54, 1974–1981. [Google Scholar]
- Zarow, M.; Dominiak, M.; Szczeklik, K.; Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zamarripa-Calderón, J.E.; Kharouf, N.; Filtchev, D. Effect of composite core materials on fracture resistance of endodontically treated teeth: A systematic review and meta-analysis of in vitro studies. Polymers 2021, 13, 2251. [Google Scholar] [CrossRef]
- Türker, S.A.; Özçelik, B.; Yilmaz, Z. Evaluation of the Bond Strength and Fracture Resistance of Different Post Systems. J. Contemp. Dent. Pract. 2015, 16, 788–793. [Google Scholar] [CrossRef]
- Sarkis-Onofre, R.; Jacinto, R.D.C.; Boscato, N.; Cenci, M.S.; Pereira-Cenci, T. Cast metal vs. glass fibre posts: A randomized controlled trial with up to 3 years of follow up. J. Dent. 2014, 42, 582–587. [Google Scholar] [CrossRef]
- Tsintsadze, N.; Margvelashvili-Malament, M.; Natto, Z.S.; Ferrari, M.; Arabia, S.; Assistant, A. Comparing survival rates of endodontically treated teeth restored either with glass-fiber-reinforced or metal posts: A systematic review and meta-analyses. J. Prosthet. Dent. 2024, 131, 567–578. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.D.; Junqueira, R.B.; de Carvalho, R.F.; Lacerda, M.F.L.S.; Faé, D.S.; Lemos, C.A.A. Is a fiber post better than a metal post for the restoration of endodontically treated teeth? A systematic review and meta-analysis. J. Dent. 2021, 112, 103750. [Google Scholar] [CrossRef] [PubMed]
- Sarkis-Onofre, R.; Amaral Pinheiro, H.; Poletto-Neto, V.; Bergoli, C.D.; Cenci, M.S.; Pereira-Cenci, T. Randomized controlled trial comparing glass fiber posts and cast metal posts. J. Dent. 2020, 96, 103334. [Google Scholar] [CrossRef] [PubMed]
- Paolone, G.; Saranicelli, M.; Devoto, W.; Putignano, A. Esthetic direct restorations in endodontically treated anterior teeth. Eur. J. Esthet. Dent. 2013, 8, 44–67. [Google Scholar]
- Pereira, G.K.R.; Lançanova, M.; Wandscher, V.F.; Kaizer, O.B.; Limberger, I.; Özcan, M.; Valandro, L.F. Fiber-matrix integrity, micromorphology and flexural strength of glass fiber posts: Evaluation of the impact of rotary instruments. J. Mech. Behav. Biomed. Mater. 2015, 48, 192–199. [Google Scholar] [CrossRef]
- Maravić, T.; Mazzitelli, C.; Mancuso, E.; Del Bianco, F.; Josić, U.; Cadenaro, M.; Breschi, L.; Mazzoni, A. Resin composite cements: Current status and a novel classification proposal. J. Esthet. Restor. Dent. 2023, 35, 1085–1097. [Google Scholar] [CrossRef]
- Scholz, K.J.; Tabenski, I.M.; Vogl, V.; Cieplik, F.; Schmalz, G.; Buchalla, W.; Hiller, K.-A.; Federlin, M. Randomized clinical split-mouth study on the performance of CAD/CAM-partial ceramic crowns luted with a self-adhesive resin cement or a universal adhesive and a conventional resin cement after 39 months. J. Dent. 2021, 115, 103837. [Google Scholar] [CrossRef]
- Vogl, V.; Hiller, K.A.; Buchalla, W.; Federlin, M.; Schmalz, G. Controlled, prospective, randomized, clinical split-mouth evaluation of partial ceramic crowns luted with a new, universal adhesive system/resin cement: Results after 18 months. Clin. Oral. Investig. 2016, 20, 2481–2492. [Google Scholar] [CrossRef]
- Mastoras, K.; Vasiliadis, L.; Koulaouzidou, E.; Gogos, C. Evaluation of push-out bond strength of two endodontic post systems. J. Endod. 2012, 38, 510–514. [Google Scholar] [CrossRef]
- Santos, M.; Fidalgo-Pereira, R.; Torres, O.; Carvalho, O.; Henriques, B.; Özcan, M.; Souza, J.C.M. The impact of inorganic fillers, organic content, and polymerization mode on the degree of conversion of monomers in resin-matrix cements for restorative dentistry: A scoping review. Clin. Oral. Investig. 2024, 28, 454. [Google Scholar] [CrossRef]
- Shafiei, F.; Fattah, Z.; Barati, S. Effect of operator skill on the dentin bonding ability of a self-adhesive resin cement after different adhesive treatments. Gen. Dent. 2019, 67, e1–e6. [Google Scholar] [PubMed]
- Özlek, E.; Neelakantan, P.; Matinlinna, J.P.; Belli, S.; Ugur, M.; Kavut, I. Adhesion of two new glass fiber post systems cemented with self-adhesive resin cements. Dent. J. 2019, 7, 80. [Google Scholar] [CrossRef] [PubMed]
- Pereira, J.R.; Pamato, S.; Santini, M.F.; Porto, V.C.; Ricci, W.A.; Só, M.V.R. Push-out bond strength of fiberglass posts cemented with adhesive and self-adhesive resin cements according to the root canal surface. Saudi Dent. J. 2021, 33, 22–26. [Google Scholar] [CrossRef] [PubMed]
- Hikita, K.; Van Meerbeek, B.; De Munck, J.; Ikeda, T.; Van Landuyt, K.; Maida, T.; Lambrechts, P.; Peumans, M. Bonding effectiveness of adhesive luting agents to enamel and dentin. Dent. Mater. 2007, 23, 71–80. [Google Scholar] [CrossRef]
- Monticelli, F.; Osorio, R.; Mazzitelli, C.; Ferrari, M.; Toledano, M. Limited decalcification/diffusion of self-adhesive cements into dentin. J. Dent. Res. 2008, 87, 974–979. [Google Scholar] [CrossRef]
- Perdigão, J.; Gomes, G.; Augusto, V. The effect of dowel space on the bond strengths of fiber posts. J. Prosthodont. 2007, 16, 154–164. [Google Scholar] [CrossRef]
- Baena, E.; Flores, A.; Ceballos, L. Influence of root dentin treatment on the push-out bond strength of fiber posts. Odontology 2017, 105, 170–177. [Google Scholar] [CrossRef]
- Roedel, L.; Bednarzig, V.; Belli, R.; Petschelt, A.; Lohbauer, U.; Zorzin, J. Self-adhesive resin cements: pH-neutralization, hydrophilicity, and hygroscopic expansion stress. Clin. Oral. Investig. 2017, 21, 1735–1741. [Google Scholar] [CrossRef]
- Luz Madrigal, E.; Tichy, A.; Hosaka, K.; Ikeda, M.; Nakajima, M.; Tagami, J. The effect of curing mode of dual-cure resin cements on bonding performance of universal adhesives to enamel, dentin and various restorative materials. Dent. Mater. J. 2021, 40, 446–454. [Google Scholar] [CrossRef]
- Eltoukhy, R.I.; Elkaffas, A.A.; Ali, A.I.; Mahmoud, S.H. Indirect Resin Composite Inlays Cemented with a Self-adhesive, Self-etch or a Conventional Resin Cement Luting Agent: A 5 Years Prospective Clinical Evaluation. J. Dent. 2021, 112, 103740. [Google Scholar] [CrossRef]
- Lee, S.Y.; Shimada, Y.; Sadr, A.; Tabata, T.; Sato, T.; Byun, J.E.; Han, S.H. Degree of conversion and interfacial adaptation of touch-cure resin cement polymerized by self-curing or dual-curing with reduced light. Clin. Oral. Investig. 2024, 28, 463. [Google Scholar] [CrossRef] [PubMed]
- Dwiandhany, W.S.; Abdou, A.; Tichy, A.; Yonekura, K.; Ikeda, M.; Hosaka, K.; Tagami, J.; Nakajima, M. Additive effects of touch-activated polymerization and extended irradiation time on bonding of light-activated adhesives to root canal dentin. J. Prosthet. Dent. 2022, 127, 750–758. [Google Scholar] [CrossRef] [PubMed]
- Jamel, R.S.; Farhan Alkhalidi, E.; Edrees Dawood, A. The effect of touch-cure polymerization on the push-out bond strength of fiber posts. Saudi Dent. J. 2024, 36, 627–632. [Google Scholar] [CrossRef] [PubMed]
- Marchionatti, A.M.E.; Wandscher, V.F.; Rippe, M.P.; Kaizer, O.B.; Valandro, L.F. Clinical performance and failure modes of pulpless teeth restored with posts: A systematic review. Braz. Oral. Res. 2017, 31, e64. [Google Scholar] [CrossRef]
- de Morais, D.C.; Butler, S.; Santos, M.J.M.C. Current Insights on Fiber Posts: A Narrative Review of Laboratory and Clinical Studies. Dent. J. 2023, 11, 236. [Google Scholar] [CrossRef]
- Takamizawa, T.; Aoki, R.; Hayashi, K.; Shoji, M.; Kasahara, Y.; Barkmeier, W.W.; Latta, M.A.; Kamimoto, A.; Miyazaki, M. Scanning electron microscopy observation of dentin bond interfaces in different types of resin luting cements. Dent. Mater. J. 2024, 43, 179–190. [Google Scholar] [CrossRef]
- Bueno, M.R.; Estrela, C.; Azevedo, B.C.; Cintra Junqueira, J.L. Root Canal Shape of Human Permanent Teeth Determined by New Cone-Beam Computed Tomographic Software. J. Endod. 2020, 46, 1662–1674. [Google Scholar] [CrossRef]
- Alhajj, M.N.; Salim, N.S.; Johari, Y.; Syahrizal, M.; Abdul-Muttlib, N.A.; Ariffin, Z. Push-out bond strength of two types of dental post luted with two types of cement at two different root levels. Acta Stomatol. Croat. 2020, 54, 263–272. [Google Scholar] [CrossRef]
- Yanık, D.; Turker, N. Glycolic acid on push-out bond strength of fiber post and smear removal: An in vitro study. Odontology 2024, 112, 739–750. [Google Scholar] [CrossRef]
- Nesello, R.; Jahnke, L.T.; Krabbe, W.M.; Júnior, C.A.D.A.; Santini, M.F.; Silveira, L.M.; Miotti, L.; Só, M.V.R.; da Rosa, R.A. A new method of adhesive system application improves the bond strength between fiber post and root dentin. Braz. Dent. J. 2024, 35, e24-5720. [Google Scholar] [CrossRef]
- Almohareb, T. Sealing Ability of Esthetic Post and Core Systems. J. Contemp. Dent. Pract. 2017, 18, 627–632. [Google Scholar] [CrossRef]
- Caceres, E.A.; Sampaio, C.S.; Atria, P.J.; Moura, H.; Giannini, M.; Coelho, P.G.; Hirata, R. Void and gap evaluation using microcomputed tomography of different fiber post cementation techniques. J. Prosthet. Dent. 2018, 119, 103–107. [Google Scholar] [CrossRef]
- Castro-Núnez, G.M.; dos Santos, J.R.E.V.; Zaniboni, J.F.; Escalante-Otárola, W.G.; Porto, T.S.; Kuga, M.C. Effect of mechanical cleaning protocols in the fiber post space on the adhesive interface between universal adhesive and root dentin. Microsc. Res. Tech. 2022, 85, 2131–2139. [Google Scholar] [CrossRef]
- Ferrari, M.; Vichi, A.; Fadda, G.; Cagidiaco, M.; Tay, F.; Breschi, L.; Polimeni, A.; Goracci, C. A randomized controlled trial of endodontically treated and restored premolars. J. Dent. Res. 2012, 91, 72S–78S. [Google Scholar] [CrossRef]
- Özcan, M.; Volpato, C.A.M. Current perspectives on dental adhesion: (3) Adhesion to intraradicular dentin: Concepts and applications. Jpn. Dent. Sci. Rev. 2020, 56, 216–223. [Google Scholar] [CrossRef]
- Tsolomitis, P.; Diamantopoulou, S.; Papazoglou, E. Contemporary Concepts of Adhesive Cementation of Glass-Fiber Posts: A Narrative Review. J. Clin. Med. 2024, 13, 3479. [Google Scholar] [CrossRef]
- Durski, M.T.; Metz, M.J.; Thompson, J.Y.; Mascarenhas, A.K.; Crim, G.A.; Vieira, S.; Mazur, R. Push-out bond strength evaluation of glass fiber posts with different resin cements and application techniques. Oper. Dent. 2016, 41, 103–110. [Google Scholar] [CrossRef]
- Tang, C.; Mercelis, B.; Ahmed, M.H.; Yoshihara, K.; Peumans, M.; Van Meerbeek, B. Adhesive Performance Assessment of Universal Adhesives and Universal Adhesive/Composite Cement Combinations. J. Adhes. Dent. 2023, 25, 241–256. [Google Scholar] [CrossRef]
- Yoshihara, K.; Yoshida, Y.; Nagaoka, N.; Hayakawa, S.; Okihara, T.; De Munck, J.; Maruo, Y.; Nishigawa, G.; Minagi, S.; Osaka, A.; et al. Adhesive interfacial interaction affected by different carbon-chain monomers. Dent. Mater. 2013, 29, 888–897. [Google Scholar] [CrossRef]
- Wang, R.; Shi, Y.; Li, T.; Pan, Y.; Cui, Y.; Xia, W. Adhesive interfacial characteristics and the related bonding performance of four self-etching adhesives with different functional monomers applied to dentin. J. Dent. 2017, 62, 72–80. [Google Scholar] [CrossRef]
- Adolfo Cheniski, D.; Freire, A.; Souza Camargo, E.; Goulart da Costa, R.; Machado de Souza, E.; Nunes Rached, R. Bond strength of prefabricated and CAD-CAM milled glass fiber post-and-cores luted with conventional, universal, and self-adhesive composite resin cement. J. Prosthet. Denstistry 2024, 131, e1–e251. [Google Scholar]
- Saikaew, P.; Sattabanasuk, V.; Harnirattisai, C.; Chowdhury, A.F.M.A.; Carvalho, R.; Sano, H. Role of the smear layer in adhesive dentistry and the clinical applications to improve bonding performance. Jpn. Dent. Sci. Rev. 2022, 58, 59–66. [Google Scholar] [CrossRef]
- Andrews, E.K.; Gedge, J.L.; Vandewalle, K.S. Bond Strength of a Novel Universal Resin Cement to Dentin with or without an Adhesive Bonding Agent: An In Vitro Study. J. Contemp. Dent. Pract. 2023, 24, 725–728. [Google Scholar] [CrossRef]
- Aoki, R.; Takamizawa, T.; Hayashi, K.; Arai, Y.; Ishii, R.; Shoji, M.; Kamimoto, A.; Miyazaki, M. Influence of different curing modes on the bonding effectiveness of self-adhesive resin luting cements in combination with universal adhesives. Dent. Mater. 2024, 40, 379–385. [Google Scholar] [CrossRef]
- Lührs, A.K.; De Munck, J.; Geurtsen, W.; Van Meerbeek, B. Composite cements benefit from light-curing. Dent. Mater. 2014, 30, 292–301. [Google Scholar] [CrossRef]
- Ozaki, A.; Shishido, S.; Nakamura, K.; Harada, A.; Katsuda, Y.; Kanno, T.; Egusa, H. Impact of adhesive primer and light-curing on polymerization kinetics of self-adhesive resin cement in association with free radical reaction. Eur. J. Oral. Sci. 2021, 129, e12828. [Google Scholar] [CrossRef]
- Pongprueksa, P.; Miletic, V.; Janssens, H.; Van Landuyt, K.L.; De Munck, J.; Godderis, L.; Van Meerbeek, B. Degree of conversion and monomer elution of CQ/amine and TPO adhesives. Dent. Mater. 2014, 30, 695–701. [Google Scholar] [CrossRef]
- Miletic, V.; Santini, A. Micro-Raman spectroscopic analysis of the degree of conversion of composite resins containing different initiators cured by polywave or monowave LED units. J. Dent. 2012, 40, 106–113. [Google Scholar] [CrossRef]
- Santi, M.R.; Lins, R.; Sahadi, B.O.; Soto-Montero, J.R.; Martins, L. Comparison of the Mechanical Properties and Push-out Bond Strength of Self-adhesive and Conventional Resin Cements on Fiber Post Cementation. Oper. Dent. 2022, 47, 346–356. [Google Scholar] [CrossRef]
- Miletic, V.; Pongprueksa, P.; De Munck, J.; Brooks, N.R.; Van Meerbeek, B. Monomer-to-polymer conversion and micro-tensile bond strength to dentine of experimental and commercial adhesives containing diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide or a camphorquinone/amine photo-initiator system. J. Dent. 2013, 41, 918–926. [Google Scholar] [CrossRef]
- Juloski, J.; Fadda, G.M.; Monticelli, F.; Fajó-Pascual, M.; Goracci, C.; Ferrari, M. Four-year Survival of Endodontically Treated Premolars Restored with Fiber Posts. J. Dent. Res. 2014, 93, 52S–58S. [Google Scholar] [CrossRef]
- Bergoli, C.; Brondani, L.; Wandscher, V.; Pereira, G.; Cenci, M.; Pereira-Cenci, T.; Valandro, L. A Multicenter Randomized Double-blind Controlled Clinical Trial of Fiber Post Cementation Strategies. Oper. Dent. 2018, 43, 128–135. [Google Scholar] [CrossRef]
- Madruga, F.C.; Ogliari, F.A.; Ramos, T.S.; Bueno, M.; Moraes, R.R. Calcium hydroxide, pH-neutralization and formulation of model self-adhesive resin cements. Dent. Mater. 2013, 29, 413–418. [Google Scholar] [CrossRef]
- Geng, T.; Pan, Y.; Liu, Z.; Yuan, C.; Wang, P.; Meng, X. Time-dependent Microhardness Gradients of Self-adhesive Resin Cements under Dual- And Self-curing Modes. Oper. Dent. 2020, 45, E280–E288. [Google Scholar] [CrossRef]
- Liu, C.; Liu, H.; Qian, Y.T.; Zhu, S.; Zhao, S.Q. The influence of four dual-cure resin cements and surface treatment selection to bond strength of fiber post. Int. J. Oral. Sci. 2014, 6, 56–60. [Google Scholar] [CrossRef]
- Fugolin, A.P.; Logan, M.G.; Kendall, A.J.; Ferracane, J.L.; Pfeifer, C.S. Effect of side-group methylation on the performance of methacrylamides and methacrylates for dentin hybridization. Dent. Mater. 2021, 37, 805–815. [Google Scholar] [CrossRef]
- Yoshida, Y.; Nagakane, K.; Fukuda, R.; Nakayama, Y.; Okazaki, M.; Shintani, H.; Inoue, S.; Tagawa, Y.; Suzuki, K.; De Munck, J.; et al. Comparative Study on Adhesive Performance of Functional Monomers. J. Dent. Res. 2004, 83, 454–458. [Google Scholar] [CrossRef]
- Zicari, F.; De Munck, J.; Scotti, R.; Naert, I.; Van Meerbeek, B. Factors affecting the cement-post interface. Dent. Mater. 2012, 28, 287–297. [Google Scholar] [CrossRef]
- Albashaireh, Z.; Bashaireh, B.; El Masoud, B. The effect of adhesive resin cement, obturation material and root dentin location on the retention of glass fiber-reinforced composite resin posts. Am. J. Dent. 2023, 36, 297–302. [Google Scholar]
- Kusumasari, C.; Margono, A.; Aditya, D.R.; Abdou, A. Effect of etch-and-rinse and self-etch modes in universal adhesives on push-out bond strength of fiber post. J. Clin. Exp. Dent. 2022, 14, e661–e668. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, J.; Shin, Y. Push-out bond strength evaluation of fiber-reinforced composite resin post cemented with self-adhesive resin cement using different adhesive bonding systems. Materials 2021, 14, 3639. [Google Scholar] [CrossRef] [PubMed]
Material/Manufacturer | Type of Resin Cement | Resin Matrix and Filler Type | Dentin Pretreatment | Mode of Application |
---|---|---|---|---|
RelyX Unicem 2 (RX)/Solventum | Self-adhesive One-step | Mixture of GPDMA, bisGPDMA and trisGPDMA | None | Apply with an Endo Tip in the canal. Insert fiber post. Excess cement removal. Photopolymerize. |
G-Cem (GC)/GC Europe | Self-adhesive One-step | UDMA, PAE, 4-META, DM, fluoro-aluminosilicate glass, silicon dioxide | None | Apply with GC capsule elongation tip in the canal after mixing. Insert fiber post within 1 min after cement application. Excess cement removal. Photopolymerize. |
Normocem (NC)/Normon | Self-adhesive One-step | Mixture of DM, glass powder, fumed silica, PAE, catalysts, stabilizer, pigments | None | Apply with an Endo-Tip in the canal. Insert fiber post. Photopolymerize. |
RelyX Universal (RU)/Solventum | Universal One-step (RU) | Mixture of GPDMA, bisGPDMA and trisGPDMA, novel amphiphilic redox initiator system, radiopaque fillers | None | Apply with the elongation tip in the canal. Insert fiber post. Excess cement removal. Photopolymerize. |
Universal Multi-step (SBUp-RU) | Scotchbond Universal Plus (SBUp) Bis-GMA, 10-MDP, 2-HEMA, silanes, silica, ethanol, CQ, water, Vitrebond copolymer | Apply with disposable applicator. Rub it in for 20 s. Direct gentle air stream over it for 5 s. Photopolymerize for 10 s. Apply RU as described above | ||
G-Cem One (GO)/GC Europe | Self-adhesive One-step | Fluoro-aluminosilicate glass, DM, initiator, stabilizer, pigment, silicon dioxide, MDP, trimethoxysilane, 6-tert-butyl-2,4-xylenol, 2,6-di-tert-butyl-p-cresol, EDTA disodium salt dehydrate, vanadyl acetylacetonate, TPO, ascorbic acid, CQ, magnesium oxide. | None | Extrude the material into the post space using an elongation tip. Insert the post within 1 min after cement application. Excess cement removal. Photopolimerize Let the material set for 4 min. |
Self-adhesive Multi-step (AEP-GO) | G-Cem One Adhesive Enhancing Primer (AEP) 10-MDP, ethanol, DM resins, butylated hydroxytoluene | Apply with disposable applicator. Leave undisturbed for 10 s. Dry for 5 s under maximum air pressure. Remove excess with paper points. Apply GO as described above. Photopolymerize. | ||
Multilink Automix (MA)/Ivoclar Vivadent | Adhesive Muti-step | Bis-GMA, HEMA, 2-dimethylaminoethyl methacrylate, ethyoxylated bisphenol A dimethacrylate, UDMA, barium glass, ytterbium trifluoride, spheroid mixed oxide | Self-etch Multilink primer Primer A: water, initiators, sulfonate amine Primer B: HEMA, phosphonic acid acrylate, methacrylate modified polyacrylic acid, stabilizers | Mix the two Multilink Primer liquids A and B in a 1:1 mixing ratio (1 drop of each primer). Apply the mixture in the canal using a thin micro-brush. Let react for 15 s. Remove excess with paper points. Dispense MA from the double-push syringe and mix the two pastes in a 1:1 ratio on the mixing pad. Coat the post with the mixed cement and place it in the canal. Excess cement removal. Photopolymerize. |
Experimental Groups | 24 h Mean (sd) | 6 Months Mean (sd) | 24 h vs. 6 Months p Values | ||||
---|---|---|---|---|---|---|---|
RX | Coronal | 8.9 (5.8) | 12.0 (7.2) b | Coronal | 10.5 (5.2) | 11.5 (5.5) cd | 0.766 |
Middle | 15.7 (9.0) | Middle | 11.8 (4.8) | ||||
Apical | 11.4(5.4) | Apical | 12.2 (6.6) | ||||
GC | Coronal | 14.3 (3.8) | 12.7 (5.6) b | Coronal | 13.0 (6.5) | 14.2 (6.9) bc | 0.350 |
Middle | 10.6 (6.8) | Middle | 14.1 (5.5) | ||||
Apical | 13.2(5.7) | Apical | 15.3 (8.5) | ||||
NC | Coronal | 13.5 (7.0) | 13.4 (6.8) b | Coronal | 4.4 (4.2) | 3.3 (2.9) e | <0.001 |
Middle | 11.6 (2.6) | Middle | 2.6 (1.9) | ||||
Apical | 15.2 (9.2) | Apical | 2.9 (2.3) | ||||
RU | Coronal | 13.7 (4.2) | 13.0 (4.5) b | Coronal | 10.5 (8.7) | 12.3 (6.0) c | 0.615 |
Middle | 14.7 (3.2) | Middle | 14.5 (4.4) | ||||
Apical | 10.3(5.1) | Apical | 11.9 (3.3) | ||||
GO | Coronal | 14.5 (4.0) | 13.0 (6.9) b | Coronal | 14.2(8.0) | 15.2 (7.7) bc | 0.259 |
Middle | 15.8 (9.0) | Middle | 15.6 (9.1) | ||||
Apical | 9.2 (5.5) | Apical | 15.6 (6.5) | ||||
SBUp-RU | Coronal | 22.3 (9.9) | 22.2 (10.1) a | Coronal | 19.5 (5.1) | 22.8 (7.0) a | 0.789 |
Middle | 27.0 (9.2) | Middle | 23.3 (6.9) | ||||
Apical | 17.2 (9.5) | Apical | 25.3 (7.8) | ||||
AEP-GO | Coronal | 16.5 (5.2) | 15.0 (5.5) b | Coronal | 16.6 (4.9) | 17.5 (8.5) b | 0.182 |
Middle | 14.4 (3.5) | Middle | 15.7 (7.6) | ||||
Apical | 14.2 (7.3) | Apical | 19.9 (11.6) | ||||
MA | Coronal | 15.1 (5.1) | 13.8 (5.0) b | Coronal | 8.6 (5.2) | 7.3 (4.6) de | <0.001 |
Middle | 14.6 (3.3) | Middle | 7.4(4.1) | ||||
Apical | 12.2 (5.9) | Apical | 5.9 (4.3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baena, E.; Escribano, N.; Fuentes, V.; Reche, I.; Ceballos, L. Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study. Materials 2025, 18, 1371. https://doi.org/10.3390/ma18061371
Baena E, Escribano N, Fuentes V, Reche I, Ceballos L. Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study. Materials. 2025; 18(6):1371. https://doi.org/10.3390/ma18061371
Chicago/Turabian StyleBaena, Eugenia, Nuria Escribano, Victoria Fuentes, Isabel Reche, and Laura Ceballos. 2025. "Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study" Materials 18, no. 6: 1371. https://doi.org/10.3390/ma18061371
APA StyleBaena, E., Escribano, N., Fuentes, V., Reche, I., & Ceballos, L. (2025). Aging Effect on Push-Out Bond Strength of Six Resin Cements: An In Vitro Study. Materials, 18(6), 1371. https://doi.org/10.3390/ma18061371