materials-logo

Journal Browser

Journal Browser

Synthesis, Sintering, and Characterization of Composites

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Advanced Composites".

Deadline for manuscript submissions: 20 June 2025 | Viewed by 3919

Special Issue Editor


E-Mail Website
Guest Editor
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Interests: metal matrix composites; spark plasma sintering; severe plastic deformation; analogue simulation

Special Issue Information

Dear Colleagues,

As an important preparation process, sintering plays a very important role in the field of modern materials science. Composites sintering can combine different types of materials into one through hot pressing to form new materials with excellent properties that are widely used in aerospace, automobile manufacturing, electronic products, and other fields.

Currently, the innovation of new sintering technologies is sought with the use of additives and second reinforcement phases in sintered matrices, which open wide opportunities for the creation of materials with excellent mechanical properties. In this sense, emerging technologies such as spark plasma sintering, hot-pressed sintering, selective laser sintering, microwave sintering, and conventional ovens are of interest.

This Special Issue aims to present the latest research related to the study of ceramics, metallic alloys, and metal matrix composites processed through advanced sintering technology, focusing attention on the microstructural evolution, interface structure, and mechanical properties of the processed materials. Manuscripts focused on innovations in metals and related composites for deformed processing are also welcome.

Dr. Xiaonan Mu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ceramics
  • alloys and their composites
  • sintering
  • mechanical properties
  • interface structure
  • strengthening mechanism

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

15 pages, 3749 KiB  
Article
Gas-Thermal Spraying Synthesis of β-Ga2O3 Luminescent Ceramics
by Makhach Kh. Gadzhiev, Arsen E. Muslimov, Damir I. Yusupov, Maksim V. Il’ichev, Yury M. Kulikov, Andrey V. Chistolinov, Ivan D. Venevtsev, Ivan S. Volchkov, Vladimir M. Kanevsky and Alexander S. Tyuftyaev
Materials 2024, 17(24), 6078; https://doi.org/10.3390/ma17246078 (registering DOI) - 12 Dec 2024
Viewed by 1182
Abstract
This paper presents the initial results of the synthesis of β-Ga2O3 luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with [...] Read more.
This paper presents the initial results of the synthesis of β-Ga2O3 luminescent ceramics via plasma gas-thermal spraying synthesis, where low-temperature plasma of an argon and nitrogen mixture was employed. A direct current electric arc generator of high-enthalpy plasma jet with a self-aligning arc length and an expanding channel of an output electrode served as a plasma source. The feedstock material consisted of a polydisperse powder of monocrystalline β-Ga2O3 with particle sizes ranging from 5 to 50 μm. The study presents the results of both theoretical and experimental studies on the heating rate and average temperature of gallium oxide particles in a plasma jet. The results of computational modelling of the synthesis process of β-Ga2O3 via plasma gas-thermal spraying are shown. The obtained ceramic samples were characterized using scanning electron microscopy and X-ray diffraction analysis. Our results indicate that the synthesis process yielded ceramics with a layered texture. The stoichiometric composition of ceramics exhibited a shift towards gallium-rich content. X-ray diffraction data demonstrated a reduction in the lattice parameters and unit cell volume of β-Ga2O3 ceramic structure. Radioluminescence spectra of β-Ga2O3 ceramics revealed an intensive emission band with a maximum at ~360 nm and non-exponential decay. The synthesized β-Ga2O3 ceramics possess potential applications in scintillation detectors. Full article
(This article belongs to the Special Issue Synthesis, Sintering, and Characterization of Composites)
Show Figures

Figure 1

12 pages, 9321 KiB  
Article
The High-Strain-Rate Impacts Behaviors of Bilayer TC4-(GNPs/TC4) Composites with a Hierarchical Microstructure
by Hongqiang Duan, Xuexia Li, Hongmei Zhang, Xingwang Cheng, Xiaonan Mu and Kefan Zheng
Materials 2024, 17(22), 5589; https://doi.org/10.3390/ma17225589 - 15 Nov 2024
Viewed by 630
Abstract
Ti matrix composites (TMCs) are promising structural materials that meet the increasing demands for light weight the automobile and aircraft industries. However, the room temperature brittleness in the traditionally homogeneous reinforcement distribution of TMCs limits their application in high-strain-rate impact environments. In the [...] Read more.
Ti matrix composites (TMCs) are promising structural materials that meet the increasing demands for light weight the automobile and aircraft industries. However, the room temperature brittleness in the traditionally homogeneous reinforcement distribution of TMCs limits their application in high-strain-rate impact environments. In the present study, novel bilayer TMCs with hierarchical microstructures were designed by the laminated combination of graphene nanoplatelet (GNPs) reinforced TC4 (Ti-6Al-4V) composites (GNPs/TC4) and a monolithic TC4. Meanwhile, the configuration of the microstructure, impact performance V50, and deformation modes of the bilayered TC4-(GNPs/TC4) plate was investigated. The plates were fabricated via field-assisted sintering technology (FAST). It turned out that the TC4-(GNPs/TC4) plate with a 7.5 mm thickness against a 7.62 mm projectile exhibited greater impact performance (V50~825 m/s) compared to the TC4 and GNPs/TC4 single-layer plates. The plate failure modes were dependent on the microstructure while the failure behaviors seemed to be influenced by the hierarchical configuration. This work provided a new strategy for utilizing TMCs in the field of high-strain-rate impact environments. Full article
(This article belongs to the Special Issue Synthesis, Sintering, and Characterization of Composites)
Show Figures

Figure 1

15 pages, 7673 KiB  
Article
Tensile Deformation Mechanism of an In Situ Formed Ti-Based Bulk Metallic Glass Composites
by Haiyun Wang, Na Chen, Huanwu Cheng, Yangwei Wang and Denghui Zhao
Materials 2024, 17(18), 4486; https://doi.org/10.3390/ma17184486 - 12 Sep 2024
Cited by 1 | Viewed by 831
Abstract
Ti-based bulk metallic glass composites (BMGMCs) containing an in situ formed metastable β phase normally exhibit enhanced plasticity attributed to induced phase transformation or twinning. However, the underlying deformation micromechanism remains controversial. This study investigates a novel deformation mechanism of Ti-based BMGMCs with [...] Read more.
Ti-based bulk metallic glass composites (BMGMCs) containing an in situ formed metastable β phase normally exhibit enhanced plasticity attributed to induced phase transformation or twinning. However, the underlying deformation micromechanism remains controversial. This study investigates a novel deformation mechanism of Ti-based BMGMCs with a composition of Ti42.3Zr28Cu8.3Nb4.7Ni1.7Be15 (at%). The microstructures after tension were analyzed using advanced electron microscopy. The dendrites were homogeneously distributed in the glassy matrix with a volume fraction of 55 ± 2% and a size of 1~5 μm. The BMGMCs deformed in a serrated manner with a fracture strength (σf) of ~1710 MPa and a fracture strain of ~7.1%, accompanying strain hardening. The plastic deformation beyond yielding was achieved by a synergistic action, which includes shear banding, localized amorphization and a localized BCC (β-Ti) to HCP (α-Ti) structural transition. The localized amorphization was caused by high local strain rates during shear band extension from the amorphous matrix to the crystalline reinforcements. The localized structural transition from BCC to HCP resulted from accumulating concentrated stress during deformation. The synergistic action enriches our understanding of the deformation mechanism of Ti-based BMGMCs and also sheds light on material design and performance improvement. Full article
(This article belongs to the Special Issue Synthesis, Sintering, and Characterization of Composites)
Show Figures

Figure 1

Review

Jump to: Research

34 pages, 7433 KiB  
Review
Research Progress on the Surface Modification of Basalt Fibers and Composites: A Review
by Miaomiao Zhu, Mingming Zhu, Ruoxin Zhai, Wuwei Zhu and Jiabei He
Materials 2025, 18(5), 1164; https://doi.org/10.3390/ma18051164 - 5 Mar 2025
Viewed by 716
Abstract
Fiber-reinforced resin composites (FRRCs) are widely used in several fields such as construction, automotive, aerospace, and power. Basalt fiber (BF) has been increasingly used to replace artificial fibers such as glass fiber and carbon fiber in the production of BF-reinforced resin matrix composites [...] Read more.
Fiber-reinforced resin composites (FRRCs) are widely used in several fields such as construction, automotive, aerospace, and power. Basalt fiber (BF) has been increasingly used to replace artificial fibers such as glass fiber and carbon fiber in the production of BF-reinforced resin matrix composites (BFRRCs). This preference stems from its superior properties, including high temperature resistance, chemical stability, ease of manufacturing, cost-effectiveness, non-toxicity, and its natural, environmentally friendly characteristics. However, the chemical inertness of BF endows it with poor compatibility, adhesion, and dispersion in a resin matrix, leading to poor adhesion and a weak BF–resin interface. The interfacial bonding strength between BF and resin is an important parameter that determines the service performance of BFRRC. Therefore, the interfacial bonding strength between them can be improved through fiber modification, resin–matrix modification, mixed enhancers, etc., which consequently upgrade the mechanical properties, thermodynamic properties, and durability of BFRRC. In this review, first, the production process and properties of BFs are presented. Second, the mechanical properties, thermodynamic properties, and durability of BFRRC are introduced. Third, the modification effect of the non-destructive surface-modification technology of BF on BFRRC is presented herein. Finally, based on the current research status, the future research direction of BFRRC is proposed, including the development of high-performance composite materials, green manufacturing processes, and intelligent applications. Full article
(This article belongs to the Special Issue Synthesis, Sintering, and Characterization of Composites)
Show Figures

Figure 1

Back to TopTop