Special Issue "Cancer Challenges during COVID-19 Pandemic"

A special issue of Journal of Personalized Medicine (ISSN 2075-4426). This special issue belongs to the section "Epidemiology".

Deadline for manuscript submissions: closed (30 June 2022) | Viewed by 13075

Special Issue Editors

Dr. Franco M. Buonaguro
E-Mail Website
Guest Editor
Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS Fondazione Pascale, 80131 Naples, Italy
Interests: oncology; molecular biology; virology; biochemistry
Special Issues, Collections and Topics in MDPI journals
Dr. Attilio AM Bianchi
E-Mail Website
Guest Editor
Ist Nazl Tumori, IRCCS, Fdn G Pascale, I-80131 Naples, Italy
Interests: health management; public health; health planning; oncology; oncological networks

Special Issue Information

Dear Colleagues,

The COVID-19 pandemic, which presented a greater risk of severe morbidity in older and fragile patients, resulted in higher mortality for people with chronic diseases (particularly cardiovascular disease and diabetes) and cancer, highlighting the weakness of many welfare systems all over the world.

Most responsive cancer institutes have had to redesign their strategies to continue their activities. In particular, new therapeutic protocols and follow-up procedures have been implemented. Patients have had to be carefully evaluated to plan the optimal personalized treatment and to adopt the most appropriate therapeutic strategies, including telemedicine and digital monitoring. Healthcare professionals have had to be monitored for exposure to SARS-CoV-2 using genetic/antigen diagnostic kits and serological tests and, most recently, have been vaccinated with one of the several—not yet fully studied—available vaccines.

Furthermore, general management and planning aspects have also had to be reorganized, with particular attention to the triage of patients for access to day hospital or day surgery sections, outpatient clinics, and clinical wards.

This Special Issue welcomes papers on all clinical topics related to COVID-19 and cancer, including, but not limited to, the following:

  • Molecular characterization of SARS-CoV-2 to identify and monitor variants for pathogenicity;
  • Immunology, molecular, and systems biology studies for vaccine evaluation in fragile patients;
  • Changes in therapeutic strategies for cancer patients to reduce frequency of hospital access;
  • Long-term efficacy (i.e., overall survival and disease-free interval) of cancer treatment changes;
  • Preclinical and clinical studies to identify effective molecules (innovative molecules or repurposing drugs) for the treatment of COVID-19 in cancer patients;
  • Innovative health management that is more effective and more quickly adaptable to unpredictable emerging conditions.

Dr. Franco M. Buonaguro
Dr. Attilio AM Bianchi
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Personalized Medicine is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • COVID-19
  • Cancer management and treatment changes
  • Telemedicine
  • Home monitoring
  • COVID-19 prevention and treatment in cancer patients

Published Papers (9 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Other

Article
Imaging Severity COVID-19 Assessment in Vaccinated and Unvaccinated Patients: Comparison of the Different Variants in a High Volume Italian Reference Center
J. Pers. Med. 2022, 12(6), 955; https://doi.org/10.3390/jpm12060955 - 10 Jun 2022
Viewed by 551
Abstract
Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the “gravity” of COVID-19 pulmonary involvement, [...] Read more.
Purpose: To analyze the vaccine effect by comparing five groups: unvaccinated patients with Alpha variant, unvaccinated patients with Delta variant, vaccinated patients with Delta variant, unvaccinated patients with Omicron variant, and vaccinated patients with Omicron variant, assessing the “gravity” of COVID-19 pulmonary involvement, based on CT findings in critically ill patients admitted to Intensive Care Unit (ICU). Methods: Patients were selected by ICU database considering the period from December 2021 to 23 March 2022, according to the following inclusion criteria: patients with proven Omicron variant COVID-19 infection with known COVID-19 vaccination with at least two doses and with chest Computed Tomography (CT) study during ICU hospitalization. Wee also evaluated the ICU database considering the period from March 2020 to December 2021, to select unvaccinated consecutive patients with Alpha variant, subjected to CT study, consecutive unvaccinated and vaccinated patients with Delta variant, subjected to CT study, and, consecutive unvaccinated patients with Omicron variant, subjected to CT study. CT images were evaluated qualitatively using a severity score scale of 5 levels (none involvement, mild: ≤25% of involvement, moderate: 26–50% of involvement, severe: 51–75% of involvement, and critical involvement: 76–100%) and quantitatively, using the Philips IntelliSpace Portal clinical application CT COPD computer tool. For each patient the lung volumetry was performed identifying the percentage value of aerated residual lung volume. Non-parametric tests for continuous and categorical variables were performed to assess statistically significant differences among groups. Results: The patient study group was composed of 13 vaccinated patients affected by the Omicron variant (Omicron V). As control groups we identified: 20 unvaccinated patients with Alpha variant (Alpha NV); 20 unvaccinated patients with Delta variant (Delta NV); 18 vaccinated patients with Delta variant (Delta V); and 20 unvaccinated patients affected by the Omicron variant (Omicron NV). No differences between the groups under examination were found (p value > 0.05 at Chi square test) in terms of risk factors (age, cardiovascular diseases, diabetes, immunosuppression, chronic kidney, cardiac, pulmonary, neurologic, and liver disease, etc.). A different median value of aerated residual lung volume was observed in the Delta variant groups: median value of aerated residual lung volume was 46.70% in unvaccinated patients compared to 67.10% in vaccinated patients. In addition, in patients with Delta variant every other extracted volume by automatic tool showed a statistically significant difference between vaccinated and unvaccinated group. Statistically significant differences were observed for each extracted volume by automatic tool between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant of COVID-19. Good statistically significant correlations among volumes extracted by automatic tool for each lung lobe and overall radiological severity score were obtained (ICC range 0.71–0.86). GGO was the main sign of COVID-19 lesions on CT images found in 87 of the 91 (95.6%) patients. No statistically significant differences were observed in CT findings (ground glass opacities (GGO), consolidation or crazy paving sign) among patient groups. Conclusion: In our study, we showed that in critically ill patients no difference were observed in terms of severity of disease or exitus, between unvaccinated and vaccinated patients. The only statistically significant differences were observed, with regard to the severity of COVID-19 pulmonary parenchymal involvement, between unvaccinated patients affected by Alpha variant and vaccinated patients affected by Delta variant, and between unvaccinated patients with Delta variant and vaccinated patients with Delta variant. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Article
Pulmonary Lymphangitis Poses a Major Challenge for Radiologists in an Oncological Setting during the COVID-19 Pandemic
J. Pers. Med. 2022, 12(4), 624; https://doi.org/10.3390/jpm12040624 - 12 Apr 2022
Cited by 1 | Viewed by 578
Abstract
Due to the increasing number of COVID-19-infected and vaccinated individuals, radiologists continue to see patients with COVID-19 pneumonitis and recall pneumonitis, which could result in additional workups and false-positive results. Moreover, cancer patients undergoing immunotherapy may show therapy-related pneumonitis during imaging management. This [...] Read more.
Due to the increasing number of COVID-19-infected and vaccinated individuals, radiologists continue to see patients with COVID-19 pneumonitis and recall pneumonitis, which could result in additional workups and false-positive results. Moreover, cancer patients undergoing immunotherapy may show therapy-related pneumonitis during imaging management. This is otherwise known as immune checkpoint inhibitor-related pneumonitis. Following on from this background, radiologists should seek to know their patients’ COVID-19 infection and vaccination history. Knowing the imaging features related to COVID-19 infection and vaccination is critical to avoiding misleading results and alarmism in patients and clinicians. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Article
Quantitative Analysis of Residual COVID-19 Lung CT Features: Consistency among Two Commercial Software
J. Pers. Med. 2021, 11(11), 1103; https://doi.org/10.3390/jpm11111103 - 28 Oct 2021
Cited by 3 | Viewed by 751
Abstract
Objective: To investigate two commercial software and their efficacy in the assessment of chest CT sequelae in patients affected by COVID-19 pneumonia, comparing the consistency of tools. Materials and Methods: Included in the study group were 120 COVID-19 patients (56 women and 104 [...] Read more.
Objective: To investigate two commercial software and their efficacy in the assessment of chest CT sequelae in patients affected by COVID-19 pneumonia, comparing the consistency of tools. Materials and Methods: Included in the study group were 120 COVID-19 patients (56 women and 104 men; 61 years of median age; range: 21–93 years) who underwent chest CT examinations at discharge between 5 March 2020 and 15 March 2021 and again at a follow-up time (3 months; range 30–237 days). A qualitative assessment by expert radiologists in the infectious disease field (experience of at least 5 years) was performed, and a quantitative evaluation using thoracic VCAR software (GE Healthcare, Chicago, Illinois, United States) and a pneumonia module of ANKE ASG-340 CT workstation (HTS Med & Anke, Naples, Italy) was performed. The qualitative evaluation included the presence of ground glass opacities (GGOs) consolidation, interlobular septal thickening, fibrotic-like changes (reticular pattern and/or honeycombing), bronchiectasis, air bronchogram, bronchial wall thickening, pulmonary nodules surrounded by GGOs, pleural and pericardial effusion, lymphadenopathy, and emphysema. A quantitative evaluation included the measurements of GGOs, consolidations, emphysema, residual healthy parenchyma, and total lung volumes for the right and left lung. A chi-square test and non-parametric test were utilized to verify the differences between groups. Correlation coefficients were used to analyze the correlation and variability among quantitative measurements by different computer tools. A receiver operating characteristic (ROC) analysis was performed. Results: The correlation coefficients showed great variability among the quantitative measurements by different tools when calculated on baseline CT scans and considering all patients. Instead, a good correlation (≥0.6) was obtained for the quantitative GGO, as well as the consolidation volumes obtained by two tools when calculated on baseline CT scans, considering the control group. An excellent correlation (≥0.75) was obtained for the quantitative residual healthy lung parenchyma volume, GGO, consolidation volumes obtained by two tools when calculated on follow-up CT scans, and for residual healthy lung parenchyma and GGO quantification when the percentage change of these volumes were calculated between a baseline and follow-up scan. The highest value of accuracy to identify patients with RT-PCR positive compared to the control group was obtained by a GGO total volume quantification by thoracic VCAR (accuracy = 0.75). Conclusions: Computer aided quantification could be an easy and feasible way to assess chest CT sequelae due to COVID-19 pneumonia; however, a great variability among measurements provided by different tools should be considered. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Article
Evolution of CT Findings and Lung Residue in Patients with COVID-19 Pneumonia: Quantitative Analysis of the Disease with a Computer Automatic Tool
J. Pers. Med. 2021, 11(7), 641; https://doi.org/10.3390/jpm11070641 - 06 Jul 2021
Cited by 3 | Viewed by 1110
Abstract
Purpose: the purpose of this study was to assess the evolution of computed tomography (CT) findings and lung residue in patients with COVID-19 pneumonia, via quantified evaluation of the disease, using a computer aided tool. Materials and methods: we retrospectively evaluated 341 CT [...] Read more.
Purpose: the purpose of this study was to assess the evolution of computed tomography (CT) findings and lung residue in patients with COVID-19 pneumonia, via quantified evaluation of the disease, using a computer aided tool. Materials and methods: we retrospectively evaluated 341 CT examinations of 140 patients (68 years of median age) infected with COVID-19 (confirmed by real-time reverse transcriptase polymerase chain reaction (RT-PCR)), who were hospitalized, and who received clinical and CT examinations. All CTs were evaluated by two expert radiologists, in consensus, at the same reading session, using a computer-aided tool for quantification of the pulmonary disease. The parameters obtained using the computer tool included the healthy residual parenchyma, ground glass opacity, consolidation, and total lung volume. Results: statistically significant differences (p value ≤ 0.05) were found among quantified volumes of healthy residual parenchyma, ground glass opacity (GGO), consolidation, and total lung volume, considering different clinical conditions (stable, improved, and worsened). Statistically significant differences were found among quantified volumes for healthy residual parenchyma, GGO, and consolidation (p value ≤ 0.05) between dead patients and discharged patients. CT was not performed on cadavers; the death was an outcome, which was retrospectively included to differentiate findings of patients who survived vs. patients who died during hospitalization. Among discharged patients, complete disease resolutions on CT scans were observed in 62/129 patients with lung disease involvement ≤5%; lung disease involvement from 5% to 15% was found in 40/129 patients, while 27/129 patients had lung disease involvement between 16 and 30%. Moreover, 8–21 days (after hospital admission) was an “advanced period” with the most severe lung disease involvement. After the extent of involvement started to decrease—particularly after 21 days—the absorption was more obvious. Conclusions: a complete disease resolution on chest CT scans was observed in 48.1% of discharged patients using a computer-aided tool to quantify the GGO and consolidation volumes; after 16 days of hospital admission, the abnormalities identified by chest CT began to improve; in particular, the absorption was more obvious after 21 days. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Article
Special Attention to Physical Activity in Breast Cancer Patients during the First Wave of COVID-19 Pandemic in Italy: The DianaWeb Cohort
J. Pers. Med. 2021, 11(5), 381; https://doi.org/10.3390/jpm11050381 - 06 May 2021
Cited by 6 | Viewed by 1095
Abstract
Recent evidence highlights that physical activity (PA) is associated with decreased recurrence risk, improved survival and quality of life for breast cancer (BC) patients. Our study aimed to explore patterns of increased/decreased PA, and sedentary behaviors among BC women of the DianaWeb cohort [...] Read more.
Recent evidence highlights that physical activity (PA) is associated with decreased recurrence risk, improved survival and quality of life for breast cancer (BC) patients. Our study aimed to explore patterns of increased/decreased PA, and sedentary behaviors among BC women of the DianaWeb cohort during the first wave of COVID-19 pandemic, and examined the association with residential locations, work changes, different modality used to increase PA, and quality of life. The study analyzed the questionnaires completed by the 781 BC women (age 54.68 ± 8.75 years on both December 2019 and June 2020. Results showed a decrease of 22%, 57%, and 26% for walking activity, vigorous activity, and total PA, respectively. Sitting/lying time increased up to 54.2% of the subjects recruited. High quality of life was associated with lower odds of being sedentary (p = 0.003). Our findings suggest that innovative health management fostering compliance with current guidelines for PA and active behavior should be implemented, especially in unpredictable emergency conditions. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Graphical abstract

Article
Breast Cancer Screening during COVID-19 Emergency: Patients and Department Management in a Local Experience
J. Pers. Med. 2021, 11(5), 380; https://doi.org/10.3390/jpm11050380 - 06 May 2021
Cited by 6 | Viewed by 866
Abstract
Background: During the COVID-19 public health emergency, our breast cancer screening activities have been interrupted. In June 2020, they resumed, calling for mandatory safe procedures to properly manage patients and staff. Methods: A protocol supporting medical activities in breast cancer screening was created, [...] Read more.
Background: During the COVID-19 public health emergency, our breast cancer screening activities have been interrupted. In June 2020, they resumed, calling for mandatory safe procedures to properly manage patients and staff. Methods: A protocol supporting medical activities in breast cancer screening was created, based on six relevant articles published in the literature and in the following National and International guidelines for COVID-19 prevention. The patient population, consisting of both screening and breast ambulatory patients, was classified into one of four categories: 1. Non-COVID-19 patient; 2. Confirmed COVID-19 in an asymptomatic screening patient; 3. suspected COVID-19 in symptomatic or confirmed breast cancer; 4. Confirmed COVID-19 in symptomatic or confirmed breast cancer. The day before the radiological exam, patients are screened for COVID-19 infection through a telephone questionnaire. At a subsequent in person appointment, the body temperature is checked and depending on the clinical scenario at stake, the scenario-specific procedures for medical and paramedical staff are adopted. Results: In total, 203 mammograms, 76 breast ultrasound exams, 4 core needle biopsies, and 6 vacuum-assisted breast biopsies were performed in one month. Neither medical nor paramedical staff were infected on any of these occasions. Conclusion: Our department organization model can represent a case of implementation of National and International guidelines applied in a breast cancer screening program, assisting hospital personnel into COVID-19 infection prevention. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Article
Cerebral Vasoreactivity Evaluated by Transcranial Color Doppler and Breath-Holding Test in Patients after SARS-CoV-2 Infection
J. Pers. Med. 2021, 11(5), 379; https://doi.org/10.3390/jpm11050379 - 06 May 2021
Cited by 6 | Viewed by 886
Abstract
From the beginning of the SARS-CoV-2 virus pandemic, it was clear that the virus is highly neurotrophic. Neurological manifestations can range from nonspecific symptoms such as dizziness, headaches and olfactory disturbances to severe forms of neurological dysfunction. Some neurological complication can occur even [...] Read more.
From the beginning of the SARS-CoV-2 virus pandemic, it was clear that the virus is highly neurotrophic. Neurological manifestations can range from nonspecific symptoms such as dizziness, headaches and olfactory disturbances to severe forms of neurological dysfunction. Some neurological complication can occur even after mild forms of respiratory disease. This study’s aims were to assess cerebrovascular reactivity in patients with nonspecific neurological symptoms after SARS-CoV-2 infection. A total of 25 patients, aged 33–62 years, who had nonspecific neurological symptoms after SARS-CoV-2 infection, as well as 25 healthy participants in the control group, were assessed for cerebrovascular reactivity according to transcranial color Doppler (TCCD) which we combined with a breath-holding test (BHT). In subjects after SARS-CoV-2 infection, there were statistically significantly lower flow velocities through the middle cerebral artery at rest period, lower maximum velocities at the end of the breath-holding period and lower breath holding index (BHI) in relation to the control group. Changes in cerebral artery flow rate velocities indicate poor cerebral vasoreactivity in the group after SARS-CoV-2 infection in regard to the control group and suggest vascular endothelial damage by the SARS-CoV-2 virus. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)

Other

Jump to: Research

Systematic Review
Artificial Intelligence and COVID-19 Using Chest CT Scan and Chest X-ray Images: Machine Learning and Deep Learning Approaches for Diagnosis and Treatment
J. Pers. Med. 2021, 11(10), 993; https://doi.org/10.3390/jpm11100993 - 30 Sep 2021
Cited by 16 | Viewed by 1882
Abstract
Objective: To report an overview and update on Artificial Intelligence (AI) and COVID-19 using chest Computed Tomography (CT) scan and chest X-ray images (CXR). Machine Learning and Deep Learning Approaches for Diagnosis and Treatment were identified. Methods: Several electronic datasets were analyzed. The [...] Read more.
Objective: To report an overview and update on Artificial Intelligence (AI) and COVID-19 using chest Computed Tomography (CT) scan and chest X-ray images (CXR). Machine Learning and Deep Learning Approaches for Diagnosis and Treatment were identified. Methods: Several electronic datasets were analyzed. The search covered the years from January 2019 to June 2021. The inclusion criteria were studied evaluating the use of AI methods in COVID-19 disease reporting performance results in terms of accuracy or precision or area under Receiver Operating Characteristic (ROC) curve (AUC). Results: Twenty-two studies met the inclusion criteria: 13 papers were based on AI in CXR and 10 based on AI in CT. The summarized mean value of the accuracy and precision of CXR in COVID-19 disease were 93.7% ± 10.0% of standard deviation (range 68.4–99.9%) and 95.7% ± 7.1% of standard deviation (range 83.0–100.0%), respectively. The summarized mean value of the accuracy and specificity of CT in COVID-19 disease were 89.1% ± 7.3% of standard deviation (range 78.0–99.9%) and 94.5 ± 6.4% of standard deviation (range 86.0–100.0%), respectively. No statistically significant difference in summarized accuracy mean value between CXR and CT was observed using the Chi square test (p value > 0.05). Conclusions: Summarized accuracy of the selected papers is high but there was an important variability; however, less in CT studies compared to CXR studies. Nonetheless, AI approaches could be used in the identification of disease clusters, monitoring of cases, prediction of the future outbreaks, mortality risk, COVID-19 diagnosis, and disease management. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Case Report
A Rare Case of Cerebral Venous Thrombosis and Disseminated Intravascular Coagulation Temporally Associated to the COVID-19 Vaccine Administration
J. Pers. Med. 2021, 11(4), 285; https://doi.org/10.3390/jpm11040285 - 08 Apr 2021
Cited by 45 | Viewed by 4188
Abstract
Globally, at the time of writing (20 March 2021), 121.759.109 confirmed COVID-19 cases have been reported to the WHO, including 2.690.731 deaths. Globally, on 18 March 2021, a total of 364.184.603 vaccine doses have been administered. In Italy, 3.306.711 confirmed COVID-19 cases with [...] Read more.
Globally, at the time of writing (20 March 2021), 121.759.109 confirmed COVID-19 cases have been reported to the WHO, including 2.690.731 deaths. Globally, on 18 March 2021, a total of 364.184.603 vaccine doses have been administered. In Italy, 3.306.711 confirmed COVID-19 cases with 103.855 deaths have been reported to WHO. In Italy, on 9 March 2021, a total of 6.634.450 vaccine doses have been administered. On 15 March 2021, Italian Medicines Agency (AIFA) decided to temporarily suspend the use of the AstraZeneca COVID-19 vaccine throughout the country as a precaution, pending the rulings of the European Medicines Agency (EMA). This decision was taken in line with similar measures adopted by other European countries due to the death of vaccinated people. On 18 March 2021, EMA’s safety committee concluded its preliminary review about thromboembolic events in people vaccinated with COVID-19 Vaccine AstraZeneca at its extraordinary meeting, confirming the benefits of the vaccine continue to outweigh the risk of side effects, however, the vaccine may be associated with very rare cases of blood clots associated with thrombocytopenia, i.e., low levels of blood platelets with or without bleeding, including rare cases of cerebral venous thrombosis (CVT). We report the case of a 54-year-old woman who developed disseminated intravascular coagulation (DIC) with multi-district thrombosis 12 days after the AstraZeneca COVID-19 vaccine administration. A brain computed tomography (CT) scan showed multiple subacute intra-axial hemorrhages in atypical locations, including the right frontal and the temporal lobes. A plain old balloon angioplasty (POBA) of the right coronary artery was performed, without stent implantation, with restoration of distal flow, but with persistence of extensive thrombosis of the vessel. A successive thorax angio-CT added the findings of multiple contrast filling defects with multi-vessel involvement: at the level of the left upper lobe segmental branches, of left interlobar artery, of the right middle lobe segmental branches and of the right interlobar artery. A brain magnetic resonance imaging (MRI) in the same day showed the presence of an acute basilar thrombosis associated with the superior sagittal sinus thrombosis. An abdomen angio-CT showed filling defects at the level of left portal branch and at the level of right suprahepatic vein. Bilaterally, it was adrenal hemorrhage and blood in the pelvis. An evaluation of coagulation factors did not show genetic alterations so as the nasopharyngeal swab ruled out a COVID-19 infection. The patient died after 5 days of hospitalization in intensive care. Full article
(This article belongs to the Special Issue Cancer Challenges during COVID-19 Pandemic)
Show Figures

Figure 1

Back to TopTop