Due to scheduled maintenance work on our database systems, there may be short service disruptions on this website between 10:00 and 11:00 CEST on June 14th.

Advances in Restorative Dentistry Materials

A special issue of Journal of Functional Biomaterials (ISSN 2079-4983). This special issue belongs to the section "Dental Biomaterials".

Deadline for manuscript submissions: 31 December 2025 | Viewed by 4983

Special Issue Editor


E-Mail Website
Guest Editor
1. School of Dentistry and Institute of Oral Medicine, National Cheng Kung University, Tainan 70101, Taiwan
2. Department of Stomatology, National Cheng Kung University Hospital, 138 Sheng Li Rd., Tainan 70403, Taiwan
Interests: restorative dentistry; dental materials; dental caries; biomechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear colleagues,

We are pleased to invite you to contribute to a Special Issue of Journal of Functional Biomaterials, titled "Advances in Restorative Dentistry Materials”. This issue aims to explore the latest innovations, research findings, and clinical applications in the field of restorative dentistry materials.

Restorative dentistry is witnessing remarkable progress, driven by continuous advancements in material science and technology. These developments are significantly enhancing the efficacy, durability, and aesthetic outcomes of dental treatments. This Special Issue seeks to gather cutting-edge research and reviews that highlight these advancements, providing a comprehensive overview of current trends and future directions.

Key areas of interest include the following:

  1. Ceramics:
  • The development of new ceramic materials that offer superior aesthetic and mechanical properties;
  • Applications of CAD/CAM technology in the fabrication of ceramic restorations;
  • The long-term clinical performance of ceramic materials.
  1. Bonding:
  • Advances in adhesive systems and bonding agents for improved retention and longevity;
  • Explorations of universal adhesives and their effectiveness across different substrates;
  • Mechanisms of bond degradation and strategies to enhance bond durability;
  • Clinical techniques for optimizing bonding outcomes in various restorative procedures.
  1. Manufacturing Processes:
  • The integration of digital dentistry and 3D printing technologies in restorative dentistry;
  • The impact of CAD/CAM systems on the precision and customization of dental restorations;
  • Innovations in manufacturing processes to enhance the quality and efficiency of restorative materials;
  • The role of nanotechnology in developing high-performance restorative materials.
  1. Composite Resins:
  • Enhancements in the formulation of composite resins for improved aesthetics and functionality;
  • Strategies to minimize polymerization shrinkage and enhance wear resistance;
  • The development of bioactive composites that promote remineralization and inhibit bacterial growth.
  1. Biocompatibility:
  • Assessments of the biocompatibility of new restorative materials;
  • Sustainable practices and the environmental impact of restorative dentistry materials;
  • The use of eco-friendly materials and processes in restorative dentistry.

We believe that this Special Issue will serve as a valuable resource for practitioners and researchers alike, fostering further advancements in restorative dentistry materials.

Prof. Dr. Shu-Fen Chuang
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Journal of Functional Biomaterials is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • ceramics
  • bonding
  • manufacturing processes
  • composite resins
  • biocompatibility

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 3627 KiB  
Article
Stress Distribution on Endodontically Treated Anterior Teeth Restored via Different Ceramic Materials with Varying Post Lengths Versus Endocrown—A 3D Finite Element Analysis
by Mai Soliman, Nawaf Almutairi, Ali Alenezi, Raya Alenezi, Amal Abdallah A. Abo-Elmagd and Manal M. Abdelhafeez
J. Funct. Biomater. 2025, 16(6), 221; https://doi.org/10.3390/jfb16060221 - 12 Jun 2025
Abstract
Objective: This study aims to evaluate the stress distribution on endodontically treated anterior teeth restored using different restorative materials and different post lengths versus endocrowns employing finite element analysis (FEA). Methods: An extracted human central incisor tooth with a fully formed apex was [...] Read more.
Objective: This study aims to evaluate the stress distribution on endodontically treated anterior teeth restored using different restorative materials and different post lengths versus endocrowns employing finite element analysis (FEA). Methods: An extracted human central incisor tooth with a fully formed apex was scanned using high-resolution cone beam computed tomography (CBCT) to generate 3D finite element models. Six models of restorations of badly destructed central incisor were grouped according to the type of ceramic material and post length versus endocrown restorations. Group V-L: Vita Enamic, long post (10 mm intra-radicular), Group C-L: Celtra Duo, long post (10 mm intra-radicular), Group V-Sh: Vita Enamic, short post (3 mm intra-radicular), Group C-Sh: Celtra Duo, short post (3 mm intra-radicular), Group V-E: Vita Enamic endocrown (3 mm intra-radicular), and Group C-E: Celtra Duo endocrown (3 mm intra-radicular). A static load of 200 N was applied to the palatal surface at a 45 degree angle to the tooth’s long axis. The maximum equivalent von Mises stress and maximum principal stress were analyzed at four locations: the finish line, coronal third of the root (12 mm from the apex), middle third of the root (8 mm from the apex), and apical third of the root (4 mm from the apex). Results: Group C-L exhibited the highest maximum VM stress and PS at the finish line, in addition to the highest maximum VM stress and PS at the root apical third, while group C-Sh reported the least maximum VM stress at the root apical third among the groups. All Celtra Duo groups reported higher maximum VM stress than the corresponding groups of Vita Enamic at the finish line and root coronal thirds. However, at the root middle and apical thirds, both materials recorded similar stresses. Conclusions: Short posts and Vita Enamic endocrowns showed minimal stress, especially at the finish line, while long posts increased stress and fracture risk. The findings support conservative restorations without posts, although clinical validation is needed to confirm their long-term effectiveness and safety. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

19 pages, 1981 KiB  
Article
Impact of a Novel Pretreatment on Bond Strength of Universal Adhesive to Conventional and CAD/CAM Resin Composites: In Vitro Study
by Ali A. Elkaffas, Abdullah Alshehri, Feras Alhalabi, Rania Bayoumi, Abdullah Ali Alqahtani, Abdulellah Almudahi, Abdulaziz Fahd Alsubaie and Abdulaziz Fahd Alharbi
J. Funct. Biomater. 2025, 16(6), 197; https://doi.org/10.3390/jfb16060197 - 27 May 2025
Viewed by 375
Abstract
Novel dentin bonding pretreatment using copper sulfate (CuSO4) and dipotassium hydrogen phosphate (K2HPO4) may create a more hydrophobic environment for dentin bonding. Thus, this study aims to investigate the impact of a CuSO4 + K2 [...] Read more.
Novel dentin bonding pretreatment using copper sulfate (CuSO4) and dipotassium hydrogen phosphate (K2HPO4) may create a more hydrophobic environment for dentin bonding. Thus, this study aims to investigate the impact of a CuSO4 + K2HPO4 pretreatment on dentin μTBS when bonded with a universal adhesive to conventional and CAD/CAM resin composites. Eighty recently extracted human molars (n = 80) were chosen and placed in transparent acrylic blocks to expose the crowns entirely. Nano-filled resin composite and CAD/CAM resin blocks were selected. Based on the dentin pretreatment, type of resin composite, and adhesion strategy, the teeth were randomly allocated into eight equal groups (n = 10). The microtensile bond strength (μTBS) and fracture mode were determined. A three-way analysis of variance (ANOVA) was used to analyze the μTBS data, followed by Tukey’s post hoc test. The μTBS values were not significantly affected by either the resin composite type (p > 0.05) or the adhesive strategy (p > 0.05) according to the three-way ANOVA results. Conversely, significant differences were detected between no dentin pretreatment (24.20 ± 4.54 MPa) and CuSO4 + K2HPO4 pretreatment (33.66 ± 5.22 MPa) using an etch-and-rinse adhesive strategy for nano-filled composites (p < 0.001). Additionally, significant differences were detected between no dentin pretreatment (24.71 ± 4.33 MPa) and CuSO4 + K2HPO4 pretreatment (32.49 ± 4.92 MPa) using an etch-and-rinse adhesive strategy for CAD/CAM resin blocks (p < 0.001). Moreover, significant differences were detected between no dentin pretreatment (21.20 ± 3.40 MPa) and CuSO4 + K2HPO4 pretreatment (30.31 ± 3.87 MPa) using a self-etching adhesive strategy for nano-filled composites (p < 0.001). Also, significant differences were detected between no dentin pretreatment (23.89 ± 3.89 MPa) and CuSO4 + K2HPO4 pretreatment (31.22 ± 4.71 MPa) using a self-etching adhesive strategy for CAD/CAM resin blocks (p < 0.001). In conclusion, dentin μTBS was enhanced by a copper-based treatment when used with nano-filled and CAD/CAM resin blocks. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

12 pages, 4779 KiB  
Article
Influence of Proximal-Cervical Undermined Enamel Areas on Marginal Quality and Enamel Integrity of Laboratory and CAD/CAM Ceramic Inlays and Partial Crowns
by Roland Frankenberger, Katharina Friedrich, Marie-Christine Dudek, Julia Winter, Norbert Krämer and Matthias J. Roggendorf
J. Funct. Biomater. 2025, 16(3), 82; https://doi.org/10.3390/jfb16030082 - 1 Mar 2025
Viewed by 890
Abstract
(1) The aim of this in vitro study was to investigate the handling of proximal-cervical undermined enamel margins on the adhesive performance of differently fabricated and differently cemented ceramic inlays and partial crowns (2) Methods: 192 extracted third molars received MOD (n [...] Read more.
(1) The aim of this in vitro study was to investigate the handling of proximal-cervical undermined enamel margins on the adhesive performance of differently fabricated and differently cemented ceramic inlays and partial crowns (2) Methods: 192 extracted third molars received MOD (n = 96) and partial crown (n = 96) preparations. A mesial 2 × 2 × 4 mm cervical groove was created in dentin to simulate a deeper (dentin) caries excavation. This dentin groove was either left (G/groove), filled with composite (F/filling), or completely removed (D/dentin). Distal proximal boxes did not receive a groove and served as controls within the same tooth. Labside (e.max Press) restorations additionally went through a temporary phase. Labside and chairside (e.max CAD) inlays and partial crowns were then adhesively luted with Syntac/Variolink Esthetic (SV) or Adhese Universal/Variolink Esthetic (AV). Initially, and again after thermomechanical loading (TML: 1 million cycles at 50 N, 25,000 thermocycles at 5 °C/55 °C), specimens were molded and the resulting 24 groups of epoxy replicas (n = 8) were gold-sputtered and examined for marginal gaps using scanning electron microscopy (200× magnification). Light microscopy (10× magnification) was used to measure proximal cervical crack propagation in adjacent enamel. (3) Results: Regardless of the adhesive system, D groups generally showed significantly lower marginal quality (79–88%; p < 0.05), with the universal adhesive performing better than the multi-step adhesive system (p < 0.05). Subgroups G and F were similar in marginal quality (94–98%; p > 0.05) and not worse than the controls (p > 0.05) regardless of the adhesive system, but showed less cracking in F than in G (p < 0.05). In general, fewer cracks were observed in chairside CAD/CAM restorations than in laboratory-fabricated restorations (p < 0.05). Partial crowns showed better marginal quality (96–98%) and less cracking than inlays (p < 0.05). (4) Conclusions: If the dentin level is lower than the enamel level in ceramic preparations after caries excavation in the proximal box, the resulting undermined enamel should not be removed. In terms of enamel integrity, partial crowns outperformed inlays. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

13 pages, 3321 KiB  
Article
Use of Photoreactive Riboflavin and Blue Light Irradiation in Improving Dentin Bonding—Multifaceted Evaluation
by Ping-Ju Chen, Jung-Pei Hsieh, Hsiao-Tzu Chang, Yuh-Ling Chen and Shu-Fen Chuang
J. Funct. Biomater. 2025, 16(1), 11; https://doi.org/10.3390/jfb16010011 - 3 Jan 2025
Viewed by 1118
Abstract
Recently, photoactivated riboflavin (RF) treatments have been approved to improve resin–dentin bonding by enhancing dentinal collagen crosslinking. This study aimed to evaluate whether RF activated by blue light (BL, 450 nm) strengthens the collagen matrix, increases resistance to enzymatic degradation, and improves adhesion [...] Read more.
Recently, photoactivated riboflavin (RF) treatments have been approved to improve resin–dentin bonding by enhancing dentinal collagen crosslinking. This study aimed to evaluate whether RF activated by blue light (BL, 450 nm) strengthens the collagen matrix, increases resistance to enzymatic degradation, and improves adhesion as effectively as ultraviolet A (UVA, 375 nm) activation. Six groups were examined: control (no treatment); RF0.1UV2 (0.1% RF with 2 min of UVA irradiation); RF0.1BL1, RF0.1BL2, RF1BL1, and RF1BL2 (0.1% and 1% RF with 1 or 2 min of BL irradiation). The effects of RF/BL on collagen crosslinking were validated by gel electrophoresis. A nanoindentation test showed that both RF/UVA and RF/BL treatments enhanced the elastic modulus and nanohardness of demineralized dentin. A zymography assay using collagen extracted from demineralized dentin also revealed significant matrix metalloproteinase-2 inhibition across all RF treatments. Microtensile bond strength (µTBS) tests conducted both post-treatment and after 7-day enzymatic degradation showed that three RF0.1 groups (RF0.1UV2, RF0.1BL1, and RF0.1BL2) maintained high µTBS values after degradation, while RF0.1BL1 generated a significantly thicker hybrid layer compared to other groups. These findings suggest that RF/BL is as effective as RF/UVA in crosslinking dentinal collagen and resisting enzymatic degradation, with 0.1% RF proving superior to 1% RF in enhancing dentin bonding. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

12 pages, 1958 KiB  
Article
Comparison of Optical Properties and Fracture Loads of Multilayer Monolithic Zirconia Crowns with Different Yttria Levels
by Chien-Ming Kang, Tzu-Yu Peng, Yan-An Wu, Chi-Fei Hsieh, Miao-Ching Chi, Hsuan-Yu Wu and Zih-Chan Lin
J. Funct. Biomater. 2024, 15(8), 228; https://doi.org/10.3390/jfb15080228 - 16 Aug 2024
Cited by 3 | Viewed by 1864
Abstract
Multilayer monolithic zirconia, which incorporates polychromatic layers that mimic natural tooth gradients, offers enhanced aesthetics and functionality while reducing debonding risks and improving fabrication efficiency. However, uncertainties remain regarding the fracture characteristics of multilayer monolithic zirconia crowns under occlusal loading, whether composed of [...] Read more.
Multilayer monolithic zirconia, which incorporates polychromatic layers that mimic natural tooth gradients, offers enhanced aesthetics and functionality while reducing debonding risks and improving fabrication efficiency. However, uncertainties remain regarding the fracture characteristics of multilayer monolithic zirconia crowns under occlusal loading, whether composed of uniform or combined yttria levels. The current study investigated how variations in yttria levels and thicknesses affected the optical properties and fracture loads of multilayer monolithic zirconia. Samples of multilayer monolithic zirconia in the Vita A1 shade were used, while employing 3Y (SZ) and 4Y + 5Y (AZ) yttria levels. The optical properties, including the color difference (ΔEWS) and translucency parameters (TP00), were measured using a digital colorimeter. The fracture loads were analyzed using a universal testing machine, and fractured surfaces were examined under a stereomicroscope. Statistical analyses assessed the impacts of the yttria levels and sample thicknesses on the optical properties. The ΔEWS values of SZ ranged 3.6 to 4.0, while for AZ, ΔEWS at 0.5 mm was 3.9 and <2.6 for other thicknesses. The TP00 values decreased with an increased thickness, with AZ generally exhibiting greater translucency than SZ. In the fracture load investigations, SZ (>1600 N) generally exceeded AZ (>1260 N), with fracture loads notably increasing with thickness, particularly for premolars (SZ > 3270 N, AZ > 2257 N). SZ predominantly exhibited partial and complete fractures, whereas AZ showed fewer non-fracture categorizations. Complete fractures began with dense, irregular cracks that extended outward to reveal smooth surfaces, while premolars subjected to higher loads exhibited concentric ripple-like structures. Partial fractures revealed radial textures indicative of areas of stress concentration. In summary, higher yttria levels were correlated with increased translucency, while variations in the fracture loads primarily stemmed from differences in the tooth position or thickness. Overall, multilayer monolithic zirconia incorporating combined yttria levels of 4Y + 5Y (AZ) offered high translucency, precise color matching, and substantial fracture resistance, rendering it highly suitable for aesthetic and functional dental applications. Full article
(This article belongs to the Special Issue Advances in Restorative Dentistry Materials)
Show Figures

Figure 1

Back to TopTop