Special Issue "Insect Vectors of Plant Diseases"

A special issue of Insects (ISSN 2075-4450). This special issue belongs to the section "Insect Pest and Vector Management".

Deadline for manuscript submissions: 31 May 2023 | Viewed by 4817

Special Issue Editors

Dr. Vincenzo Cavalieri
E-Mail Website
Guest Editor
Institute for Sustainable Plant Protection, CNR (Consiglio Nazionale delle Ricerche), Via Amendola 122/D, 70126 Bari, Italy
Interests: insect vectors; hemipteran insects; IPM; spittlebugs; Xylella fastidiosa; agricultural entomology
Dr. Sabrina Bertin
E-Mail Website
Guest Editor
Council for Agricultural Research and Agricultural Economics – Research Centre for Plant Protection and Certifica-tion (CREA-DC), Via C.G. Bertero 22, 00156 Rome, Italy
Interests: agricultural entomology; insect vectors of plant pathogens; hemipteran insects; epidemiology of viral; bacterial and phytoplasma diseases; detection of plant pathogens

Special Issue Information

Dear Colleagues,

Viruses, bacteria, and phytoplasmas are responsible for several economically important plant diseases. Many of these pathogens are transmitted by insect vectors, mainly belonging to the orders Hemiptera (Fulgoromorpha and Cicadomorpha) and Thysanoptera, and rarely by species belonging to the order Coleoptera. Knowledge of the different biological aspects of these insects, as well as the mechanisms underlying plant–vector–pathogen relationships, is of fundamental importance to the implementation of appropriate and effective measures to control plant diseases. This Special Issue aims to address the biology, ecology, genetics, pathogen transmission, behavior, systematics, and phylogenetics of insect vectors. In addition, special attention will be given to molecular tools in the study of vector insects, and to new sustainable measures to be employed in the control of these insects.

Dr. Vincenzo Cavalieri
Dr. Sabrina Bertin
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Insects is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • vector biology
  • vector ecology
  • vector behavior
  • vector phylogenetics
  • vector systematics
  • vector transmission
  • vector control
  • plant–vector–pathogen interactions

Published Papers (7 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Aphrophoridae as Potential Vectors of Xylella fastidiosa in Tunisia
Insects 2023, 14(2), 119; https://doi.org/10.3390/insects14020119 - 24 Jan 2023
Viewed by 365
Abstract
The present study is an update on the situation of potential vectors of Xylella fastidiosa in Tunisia. Investigations in nine Tunisian regions (Nabeul, Bizerte, Béja, Jendouba, Zaghouan, Kairouan, Ben Arous, Tunis and Manouba) from 2018 to 2021 allowed for the observation of 3758 [...] Read more.
The present study is an update on the situation of potential vectors of Xylella fastidiosa in Tunisia. Investigations in nine Tunisian regions (Nabeul, Bizerte, Béja, Jendouba, Zaghouan, Kairouan, Ben Arous, Tunis and Manouba) from 2018 to 2021 allowed for the observation of 3758 Aphrophoridae among a total of 9702 Auchenorrhyncha individuals collected by sweep net. Four Aphrophoridae species were identified with Philaenus tesselatus as most abundant (62%), followed by Neophilaenus campestris (28%), Neophilaenus lineatus (5%) and Philaenus maghresignus (5%). Aphrophoridae individuals were found to be particularly abundant in both forests of Nabeul and Jendouba, secondarily in olive groves and dry grassland. Furthermore, their distribution on weed hosts was followed in these two regions where nymphs and adults are widely distributed. P. tesselatus appears to be the most abundant species as determined either by conventional sweep netting for adults or by plant sampling on Sonchus, Smyrnium, Cirsium, Rumex, Polygonum and Picris for nymphs. Limited numbers of adults of P. maghresignus were detected by sweep netting, while nymphs of this species were found on Asphodelus microcarpus only. N. campestris was found in high numbers on plants belonging to the Poaceae family in forests, dry grassland and olive groves whereas N. lineatus occurred on herbs under or near olive trees and in dry grasslands. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Graphical abstract

Article
Efficacy of Conventional and Organic Insecticides against Scaphoideus titanus: Field and Semi-Field Trials
Insects 2023, 14(2), 101; https://doi.org/10.3390/insects14020101 - 17 Jan 2023
Viewed by 395
Abstract
Scaphoideus titanus is the main vector of phytoplasmas associated with Flavescence dorée (FD), one of the most serious threats to viticulture in many European countries. To minimize the spread of this disease, mandatory control measures against S. titanus were decided in Europe. In [...] Read more.
Scaphoideus titanus is the main vector of phytoplasmas associated with Flavescence dorée (FD), one of the most serious threats to viticulture in many European countries. To minimize the spread of this disease, mandatory control measures against S. titanus were decided in Europe. In the 1990s, the repeated application of insecticides (mainly organophosphates) proved to be an effective measure to control the vector and the related disease in north-eastern Italy. These insecticides and most of the neonicotinoids were recently banned from European viticulture. Serious FD issues detected in the recent years in northern Italy could be related to the use of less effective insecticides. Trials aimed at evaluating the efficacy of the most used conventional and organic insecticides in the control of S. titanus have been performed in semi-field and field conditions to test this hypothesis. In efficacy trials, carried out in four vineyards, etofenprox and deltamethrin proved to be the best conventional insecticides, while pyrethrins were the most impactful among organic insecticides. Insecticide residual activity was evaluated in semi-field and field conditions. Acrinathrin showed the most significant residual effects in both conditions. In semi-field trials, most of the pyrethroids were associated with good results in terms of residual activity. However, these effects declined in field conditions, probably due to high temperatures. Organic insecticides showed poor results in terms of residual efficacy. Implications of these results in the context of Integrated Pest Management in conventional and organic viticulture are discussed. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

Article
Rickettsia Infection Benefits Its Whitefly Hosts by Manipulating Their Nutrition and Defense
Insects 2022, 13(12), 1161; https://doi.org/10.3390/insects13121161 - 15 Dec 2022
Viewed by 613
Abstract
Endosymbionts play an essential role in the biology, physiology and immunity of insects. Many insects, including the whitefly Bemisia tabaci, are infected with the facultative endosymbiont Rickettsia. However, the mutualism between Rickettsia and its whitefly host remains unclear. This study investigated the [...] Read more.
Endosymbionts play an essential role in the biology, physiology and immunity of insects. Many insects, including the whitefly Bemisia tabaci, are infected with the facultative endosymbiont Rickettsia. However, the mutualism between Rickettsia and its whitefly host remains unclear. This study investigated the biological and physiological benefits of Rickettsia infection to B. tabaci. Results revealed that infection of Rickettsia increased the fertility, the survival rate from nymph to adult and the number of female whiteflies. In addition, this facilitation caused a significant reduction in nymphal developmental duration but did not affect percentage rate of egg hatching. Rickettsia infected B. tabaci had significantly higher glycogen, soluble sugar and trehalose contents than Rickettsia negative B. tabaci individuals. Rickettsia also improved the immunity of its whitefly hosts. Rickettsia infested B. tabaci had lower mortality rates and higher semi-lethal concentrations (LC50) when exposed to the fungus Akanthomyces attenuatus and the insecticides imidacloprid and spirotetramat. The percentage of parasitism by Encarsia formosa was also reduced by Rickettsia infection. Overall, Rickettsia infection benefits B. tabaci by improving the nutritional composition of its host, and also protects B. tabaci by enhancing its resistance towards insecticides (imidacloprid and spirotetramat), entomopathogenic fungi (A. attenuatus) and its main parasitoid (E. formosa); all of which could significantly impact on current management strategies. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

Article
Molecular Detection of Pentastiridius leporinus, the Main Vector of the Syndrome ‘Basses Richesses’ in Sugar Beet
Insects 2022, 13(11), 992; https://doi.org/10.3390/insects13110992 - 28 Oct 2022
Viewed by 666
Abstract
Monitoring of Pentastiridius leporinus (Hemiptera: Auchenorrhyncha: Cixiidae), representing the main vector of the syndrome ‘basses richesses’ (SBR) disease in sugar beet is based on morphological identification. However, two other cixiid species, Reptalus quinquecostatus and Hyalesthes obsoletus with similar external characters are known to [...] Read more.
Monitoring of Pentastiridius leporinus (Hemiptera: Auchenorrhyncha: Cixiidae), representing the main vector of the syndrome ‘basses richesses’ (SBR) disease in sugar beet is based on morphological identification. However, two other cixiid species, Reptalus quinquecostatus and Hyalesthes obsoletus with similar external characters are known to appear in sugar beet fields and are challenging to be distinguished from P. leporinus. We present a PCR-based method for species-specific detection of both male and female P. leporinus, directly after sweep net collection or after up to 18 months long term storage on sticky traps. Two methods of DNA template preparation, based on a commercial extraction kit or on simple grinding in phosphate-buffered saline (PBS) were compared. The latter method was also established for eggs and all five nymphal instars of P. leporinus from a rearing. Furthermore, in silico primer analysis showed that all Auchenorrhyncha species including far related species reported from sugar beet fields can be differentiated from P. leporinus. This was PCR-confirmed for the most common Auchenorrhyncha species from different German sugar beet fields. Sequence analysis of the P. leporinus mitochondrial cytochrome oxidase I gene (COI) amplicon showed a close relationship to COI from P. beieri but separated from the Reptalus and Hyalesthes species which are grouped into the same family Cixiidae. We present a sensitive, cost- and time-saving PCR-based method for reliable and specific detection of eggs and all nymphal instars, as well as male and female P. leporinus, after different methods of planthopper collection and template DNA template preparation that can be used in large scale monitoring assays. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

Article
Survey of Candidatus Liberibacter Solanacearum and Its Associated Vectors in Potato Crop in Spain
Insects 2022, 13(10), 964; https://doi.org/10.3390/insects13100964 - 21 Oct 2022
Viewed by 526
Abstract
Candidatus Liberibacter solanacearum’ (CaLsol), the etiological agent of potato zebra chip (ZC), is transmitted to potato plants by the psyllid Bactericera cockerelli (Šulc, 1909) in North and Central America and New Zealand. The risk of the dispersion of ZC in Spain depends [...] Read more.
Candidatus Liberibacter solanacearum’ (CaLsol), the etiological agent of potato zebra chip (ZC), is transmitted to potato plants by the psyllid Bactericera cockerelli (Šulc, 1909) in North and Central America and New Zealand. The risk of the dispersion of ZC in Spain depends on the presence of an efficient vector. This work studies the presence and abundance of ZC symptoms and CaLsol in potato plants, as well as the presence and abundance of psyllid species associated with potato crops in the main producing areas in Spain. Eighty-eight plots were surveyed punctually to detect ZC symptoms and psyllid species in the main potato-producing areas. Furthermore, fourteen potato plots were surveyed by different sampling methods during the cropping season to detect psyllid species from 2016 to 2018. Very few symptomatic and CaLsol-positive plants were detected in Mainland Spain, and any positive plant was detected in the Canary Islands. Most of the adult psyllids captured were identified as Bactericera nigricornis (Foerster, 1848), and some of them as Bactericera trigonica, but no B. cockerelli was detected. B. nigricornis was found widely distributed in the northern half of the Iberian Peninsula; however, this psyllid does not seem sufficient to pose a threat to potato production, due to the scarce number of specimens and because the frequency of B. nigricornis specimens that were CaLsol+ was very low. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

Article
Mitochondrial Genetic Diversity of Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) Associated with Cassava in Lao PDR
Insects 2022, 13(10), 861; https://doi.org/10.3390/insects13100861 - 22 Sep 2022
Viewed by 927
Abstract
Cassava Mosaic Disease (CMD) caused by Sri Lankan cassava mosaic virus (SLCMV), has rapidly spread in Southeast Asia (SEA) since 2016. Recently it has been documented in Lao PDR. Previous reports have identified whitefly species of B. tabaci as potential vectors of CMD [...] Read more.
Cassava Mosaic Disease (CMD) caused by Sri Lankan cassava mosaic virus (SLCMV), has rapidly spread in Southeast Asia (SEA) since 2016. Recently it has been documented in Lao PDR. Previous reports have identified whitefly species of B. tabaci as potential vectors of CMD in SEA, but their occurrence and distribution in cassava fields is not well known. We conducted a countrywide survey in Lao PDR for adult whiteflies in cassava fields, and determined the abundance and genetic diversity of the B. tabaci species complex using mitochondrial cytochrome oxidase I (mtCOI) sequencing. In order to expedite the process, PCR amplifications were performed directly on whitefly adults without DNA extraction, and mtCOI sequences obtained using nanopore portable-sequencing technology. Low whitefly abundances and two cryptic species of the B. tabaci complex, Asia II 1 and Asia II 6, were identified. This is the first work on abundance and genetic identification of whiteflies associated with cassava in Lao PDR. This study indicates currently only a secondary role for Asia II in spreading CMD or as a pest. Routine monitoring and transmission studies on Asia II 6 should be carried out to establish its potential role as a vector of SLCMV in this region. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

Article
Turnip Mosaic Virus Infection Differentially Modifies Cabbage Aphid Probing Behavior in Spring and Winter Oilseed Rape (Brassica napus)
Insects 2022, 13(9), 791; https://doi.org/10.3390/insects13090791 - 31 Aug 2022
Viewed by 604
Abstract
Direct and indirect effects of plant virus infection on vector behavior have been discovered to improve virus transmission efficiency, but the impact of plant cultivars in virus–vector–plant interactions has received little attention. Electropenetrography (EPG) allows real-time tracking and quantification of stylet penetration behaviors, [...] Read more.
Direct and indirect effects of plant virus infection on vector behavior have been discovered to improve virus transmission efficiency, but the impact of plant cultivars in virus–vector–plant interactions has received little attention. Electropenetrography (EPG) allows real-time tracking and quantification of stylet penetration behaviors, pathogen transmission, and plant resistance mechanisms. Quantitative probing behaviors on a spring oilseed rape cultivar, ‘Xinyou17’, and a winter oilseed rape cultivar, ‘Zheping4’, were investigated using EPG to compare turnip mosaic virus (TuMV) regulation of cabbage aphid probing behavior. Results for indirect effects showed that compared to mock-inoculated plants, cabbage aphids on infected plants increased brief probing frequency, cell penetration frequency, intracellular probing time, and decreased time to first probe and pathway time, potentially promoting viral acquisition. TuMV also directly influences aphid probing behavior. Viruliferous aphids had reduced pathway time, increased cell penetration frequency, increased intracellular probing time, increased salivation frequency, and ingested less sap than non-viruliferous aphids, primed for viral infection. Although oilseed rape cultivars can also influence aphid behavior, the main effect of cultivars was not significant on TuMV-infected plants. Full article
(This article belongs to the Special Issue Insect Vectors of Plant Diseases)
Show Figures

Figure 1

Back to TopTop