Synthesis, Structural Analysis and Biological Activity of Metal Complexes

A special issue of Inorganics (ISSN 2304-6740). This special issue belongs to the section "Bioinorganic Chemistry".

Deadline for manuscript submissions: 31 October 2025 | Viewed by 1921

Special Issue Editors


E-Mail Website
Guest Editor
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo 05508-000, Brazil
Interests: metal complexes; DNA interactions; protein inhibition; anticancer metallodrugs; crystallography

E-Mail Website
Guest Editor
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, Sao Paulo 05508-000, Brazil
Interests: essential metal complexes; DNA interactions; crucial protein inhibition; ROS (reactive oxygen species); anticancer metallodrugs; EPR spectroscopy; inhibition of proteins and peptides aggregation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue of Inorganics, titled "Synthesis, Structural Analysis and Biological Activity of Metal Complexes", places particular emphasis on the biological applications and therapeutic potential of different metal complexes, both endogenous or exogenous. Based on recent advancements in design and synthesis methodology, researchers are now able to fine-tune metal complexes for specific biological activities, enabling targeted interactions with selected biomolecules such as enzymes, proteins and DNA. These interactions are crucial for developing metal-based therapies, and studies in this Issue highlight significant progress in using metal complexes to fight infections, cancer, inflammatory diseases, viruses and neurodegenerative disorders.

Alongside biological insights, structural analysis plays a vital role in understanding the precise configurations, possible isomers and interactions of these complexes, providing crucial details about metal–ligand bonding and molecular architecture. Mechanistic studies further reveal how metal complexes can trigger biochemical pathways or disrupt biological processes in beneficial ways for therapeutic use. Theoretical simulations can give support to experimental data or screen probable possibilities. Together, these findings demonstrate the potential of metal complexes as powerful tools in medicinal chemistry, offering new solutions to longstanding health challenges while promoting interdisciplinary collaboration between inorganic chemistry and the life sciences.

Prof. Dr. João Honorato de Araujo-Neto
Prof. Dr. Ana Maria Da Costa Ferreira
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Inorganics is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2200 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • metal complexes
  • biological activity
  • therapeutic applications
  • structural analysis
  • metal–biomolecule interactions
  • medicinal inorganic chemistry
  • anticancer agents
  • antimicrobial activity
  • antiviruses activity
  • neurodegenerative disease management

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

19 pages, 1941 KiB  
Article
Structural, Quantum Chemical, and Cytotoxicity Analysis of Acetylplatinum(II) Complexes with PASO2 and DAPTA Ligands
by Stefan Richter, Dušan Dimić, Milena R. Kaluđerović, Fabian Mohr and Goran N. Kaluđerović
Inorganics 2025, 13(8), 253; https://doi.org/10.3390/inorganics13080253 - 27 Jul 2025
Viewed by 449
Abstract
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) [...] Read more.
The development of novel platinum-based anticancer agents remains a critical objective in medicinal inorganic chemistry, particularly in light of resistance and toxicity limitations associated with cisplatin. In this study, the synthesis, structural characterization, quantum chemical analysis, and cytotoxic evaluation of four new acetylplatinum(II) complexes (cis-[Pt(COMe)2(PASO2)2], cis-[Pt(COMe)2(DAPTA)2], trans-[Pt(COMe)Cl(DAPTA)2], and trans-[Pt(COMe)Cl(PASO2)]: 14, respectively) bearing cage phosphine ligands PASO2 (2-thia-1,3,5-triaza-phosphaadamantane 2,2-dioxide) and DAPTA (3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane) are presented. The coordination geometries and NMR spectral features of the cis/trans isomers were elucidated through multinuclear NMR and DFT calculations at the B3LYP/6-311++G(d,p)/LanL2DZ level, with strong agreement between experimental and theoretical data. Quantum Theory of Atoms in Molecules (QTAIM) analysis was applied to investigate bonding interactions and assess the covalent character of Pt–ligand bonds. Cytotoxicity was evaluated against five human cancer cell lines. The PASO2-containing complex in cis-configuration, 1, demonstrated superior activity against thyroid (8505C) and head and neck (A253) cancer cells, with potency surpassing that of cisplatin. The DAPTA complex 2 showed enhanced activity toward ovarian (A2780) cancer cells. These findings highlight the influence of ligand structure and isomerism on biological activity, supporting the rational design of phosphine-based Pt(II) anticancer drugs. Full article
Show Figures

Figure 1

17 pages, 3073 KiB  
Article
Synthesis, Characterization, and Anticancer Activity of 3-Chlorothiophene-2-carboxylic Acid Transition Metal Complexes
by Baiquan Hu, Qianqian Kang, Xianggao Meng, Hao Yin, Xingzhi Yang, Yanting Yang and Mei Luo
Inorganics 2025, 13(7), 238; https://doi.org/10.3390/inorganics13070238 - 11 Jul 2025
Viewed by 563
Abstract
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py [...] Read more.
In this study, 3-chlorothiophene-2-carboxylic acid (HL) was used as a main ligand to successfully synthesize four novel complexes: [Cu(L)2(Py)2(OH2)2] (1), [Co(L)2(Py)2(OH2)2] (2) (Py = pyridine), [{Ni(L)2(OH2)4}2{Ni(L)(OH2)5}]L•5H2O (3), and [{Co(L)2(OH2)4}2{Co(L)(OH2)5}]L•5H2O (4). All four compounds were identified by elemental analysis and ESI mass spectrometry, and subsequently characterized by IR spectroscopy, UV-visible diffuse reflectance spectroscopy, electron paramagnetic resonance spectroscopy, thermogravimetric analysis, single-crystal X-ray crystallography, and cyclic voltammetry. X-ray analyses revealed that complexes 1 and 2 exhibit a centrosymmetric pseudo-octahedral coordination geometry; the copper (II) and cobalt (II) metal ions, respectively, are located at the crystallographic center of inversion. The coordination sphere of the copper (II) complex is axially elongated in accordance with the Jahn–Teller effect. Intriguingly, for charge neutrality, compounds 3 and 4 crystallized as three independent mononuclear octahedrally coordinated metal centers, which are two [ML2(OH2)4] complex molecules and one [ML(OH2)5]+ complex cation (M = NiII and CoII, respectively), with the ligand anion L serving as the counter ion. The anticancer activities of these complexes were systematically assessed on human leukemia K562 cells, lung cancer A549 cells, liver cancer HepG2 cells, breast cancer MDA-MB-231 cells, and colon cancer SW480 cells. Among them, complex 4 shows significant inhibitory effects on leukemia K562 cells and colon cancer SW480 cells. Full article
Show Figures

Figure 1

13 pages, 2415 KiB  
Article
Synthesis, Characterization, and Biological Activities of Rare Earth Metal Complexes with Gallic Acid
by Nguyen Thi Hien Lan, Hoang Phu Hiep, Dinh Cong Trinh and Pham Van Khang
Inorganics 2025, 13(6), 180; https://doi.org/10.3390/inorganics13060180 - 28 May 2025
Viewed by 564
Abstract
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 [...] Read more.
This study reports the synthesis and characterization of four novel rare earth-gallic acid complexes, Sm(Gal)3·4H2O, Eu(Gal)3·4H2O, Tb(Gal)3·4H2O, and Dy(Gal)3·4H2O. These complexes were synthesized under optimized conditions (60 °C, pH 4–5) and characterized using the Ln3+ elemental content method, infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), mass spectrometry (MS), and fluorescence spectroscopy. IR spectra confirmed the coordination of rare earth ions (Ln3+) with gallic acid through carboxylate oxygen atoms. TGA revealed the thermal decomposition pathways, while MS identified the molecular ion peaks and fragmentation patterns. All complexes exhibited strong luminescence under UV excitation, with emission peaks corresponding to characteristic transitions of Sm3+, Eu3+, Tb3+, and Dy3+. Biological assays demonstrated significant antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa, with Dy(Gal)3·4H2O showing the highest efficacy. Additionally, the complexes displayed inhibitory effects on MCF7 breast cancer cells, with Tb(Gal)3·4H2O exhibiting the lowest IC50 value (11.3 µM). These findings suggest that rare earth metal complexes with gallic acid have potential applications in biomedical fields, particularly as antimicrobial and anticancer agents. Full article
Show Figures

Figure 1

Back to TopTop