ijms-logo

Journal Browser

Journal Browser

Special Issue "Small GTPases"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (15 November 2018).

Special Issue Editor

Prof. Dr. Takaya Satoh
E-Mail Website
Guest Editor
Laboratory of Cell Biology, Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, Japan
Interests: cell biology; animal cells; intracellular signal transduction; small GTPases; type II diabetes; insulin signaling; glucose transporter; skeletal muscle; adipocytes
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

The family of signal transducing small GTPases serves as a molecular switch of intracellular signal transduction in eukaryotic cells. It has been implicated in a diverse array of cell functions, such as gene expression, cytoskeletal rearrangements, intracellular transport of vesicles, and macromolecular transport across the nuclear envelope. In humans, defects in small GTPase-mediated signaling are intimately involved in various diseases, including cancer. In contrast to heterotrimeric G proteins, another family of signal transducing GTPases, small GTPases act as a monomer (single polypeptide) attached to cell and intracellular membranes through post-translational lipid modifications. Virtually all small GTPases exist in either GDP-bound or GTP-bound conformation, interacting with specific regulatory and target proteins in a manner dependent on the bound GDP or GTP. In many cases, upstream signals, such as receptor-mediated signals, stimulate the formation of the GTP-bound conformation, which in turn activates downstream targets.

This Special Issue “Small GTPases” aims to provide new insights into physiological functions and regulatory mechanisms of any kinds of signal transducing small GTPases in the cell. Authors are invited to submit original research and review articles related to these subjects.

Prof. Dr. Takaya Satoh
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal cell
  • cell growth
  • cell motility
  • guanine nucleotide exchange
  • human disease
  • protein-protein interaction
  • signal transduction
  • vesicular transport

Related Special Issue

Published Papers (21 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Rab39a and Rab39b Display Different Intracellular Distribution and Function in Sphingolipids and Phospholipids Transport
Int. J. Mol. Sci. 2019, 20(7), 1688; https://doi.org/10.3390/ijms20071688 - 04 Apr 2019
Cited by 12 | Viewed by 1536
Abstract
Rab GTPases define the identity and destiny of vesicles. Some of these small GTPases present isoforms that are expressed differentially along developmental stages or in a tissue-specific manner, hence comparative analysis is difficult to achieve. Here, we describe the intracellular distribution and function [...] Read more.
Rab GTPases define the identity and destiny of vesicles. Some of these small GTPases present isoforms that are expressed differentially along developmental stages or in a tissue-specific manner, hence comparative analysis is difficult to achieve. Here, we describe the intracellular distribution and function in lipid transport of the poorly characterized Rab39 isoforms using typical cell biology experimental tools and new ones developed in our laboratory. We show that, despite their amino acid sequence similarity, Rab39a and Rab39b display non-overlapping intracellular distribution. Rab39a localizes in the late endocytic pathway, mainly at multivesicular bodies. In contrast, Rab39b distributes in the secretory network, at the endoplasmic reticulum/cis-Golgi interface. Therefore, Rab39a controls trafficking of lipids (sphingomyelin and phospholipids) segregated at multivesicular bodies, whereas Rab39b transports sphingolipids biosynthesized at the endoplasmic reticulum-Golgi factory. Interestingly, lyso bis-phosphatidic acid is exclusively transported by Rab39a, indicating that both isoforms do not exert identical functions in lipid transport. Conveniently, the requirement of eukaryotic lipids by the intracellular pathogen Chlamydia trachomatis rendered useful for dissecting and distinguishing Rab39a- and Rab39b-controlled trafficking pathways. Our findings provide comparative insights about the different subcellular distribution and function in lipid transport of the two Rab39 isoforms. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Article
Exploring Novel Functions of the Small GTPase Ypt1p under Heat-Shock by Characterizing a Temperature-Sensitive Mutant Yeast Strain, ypt1-G80D
Int. J. Mol. Sci. 2019, 20(1), 132; https://doi.org/10.3390/ijms20010132 - 01 Jan 2019
Cited by 1 | Viewed by 1433
Abstract
In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on [...] Read more.
In our previous study, we found that Ypt1p, a Rab family small GTPase protein, exhibits a stress-driven structural and functional switch from a GTPase to a molecular chaperone, and mediates thermo tolerance in Saccharomyces cerevisiae. In the current study, we focused on the temperature-sensitive ypt1-G80D mutant, and found that the mutant cells are highly sensitive to heat-shock, due to a deficiency in the chaperone function of Ypt1pG80D. This defect results from an inability of the protein to form high molecular weight polymers, even though it retains almost normal GTPase function. The heat-stress sensitivity of ypt1-G80D cells was partially recovered by treatment with 4-phenylbutyric acid, a chemical chaperone. These findings indicate that loss of the chaperone function of Ypt1pG80D underlies the heat sensitivity of ypt1-G80D cells. We also compared the proteomes of YPT1 (wild-type) and ypt1-G80D cells to investigate Ypt1p-controlled proteins under heat-stress conditions. Our findings suggest that Ypt1p controls an abundance of proteins involved in metabolism, protein synthesis, cellular energy generation, stress response, and DNA regulation. Finally, we suggest that Ypt1p essentially regulates fundamental cellular processes under heat-stress conditions by acting as a molecular chaperone. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Article
Interaction of the GTPase Elongation Factor Like-1 with the Shwachman-Diamond Syndrome Protein and Its Missense Mutations
Int. J. Mol. Sci. 2018, 19(12), 4012; https://doi.org/10.3390/ijms19124012 - 12 Dec 2018
Cited by 5 | Viewed by 1395
Abstract
The Shwachman-Diamond Syndrome (SDS) is a disorder arising from mutations in the genes encoding for the Shwachman-Bodian-Diamond Syndrome (SBDS) protein and the GTPase known as Elongation Factor Like-1 (EFL1). Together, these proteins remove the anti-association factor eIF6 from the surface of the pre-60S [...] Read more.
The Shwachman-Diamond Syndrome (SDS) is a disorder arising from mutations in the genes encoding for the Shwachman-Bodian-Diamond Syndrome (SBDS) protein and the GTPase known as Elongation Factor Like-1 (EFL1). Together, these proteins remove the anti-association factor eIF6 from the surface of the pre-60S ribosomal subunit to promote the formation of mature ribosomes. SBDS missense mutations can either destabilize the protein fold or affect surface epitopes. The molecular alterations resulting from the latter remain largely unknown, although some evidence suggest that binding to EFL1 may be affected. We further explored the effect of these SBDS mutations on the interaction with EFL1, and showed that all tested mutations disrupted the binding to EFL1. Binding was either severely weakened or almost abolished, depending on the assessed mutation. In higher eukaryotes, SBDS is essential for development, and lack of the protein results in early lethality. The existence of patients whose only source of SBDS consists of that with surface missense mutations highlights the importance of the interaction with EFL1 for their function. Additionally, we studied the interaction mechanism of the proteins in solution and demonstrated that binding consists of two independent and cooperative events, with domains 2–3 of SBDS directing the initial interaction with EFL1, followed by docking of domain 1. In solution, both proteins exhibited large flexibility and consisted of an ensemble of conformations, as demonstrated by Small Angle X-ray Scattering (SAXS) experiments. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Article
Identification and Characterization of the Entamoeba Histolytica Rab8a Binding Protein: A Cdc50 Homolog
Int. J. Mol. Sci. 2018, 19(12), 3831; https://doi.org/10.3390/ijms19123831 - 30 Nov 2018
Cited by 1 | Viewed by 1330
Abstract
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane [...] Read more.
Membrane traffic plays a pivotal role in virulence in the enteric protozoan parasite Entamoeba histolytica. EhRab8A small GTPase is a key regulator of membrane traffic at the endoplasmic reticulum (ER) of this protist and is involved in the transport of plasma membrane proteins. Here we identified the binding proteins of EhRab8A. The Cdc50 homolog, a non-catalytic subunit of lipid flippase, was identified as an EhRab8A binding protein candidate by affinity coimmunoprecipitation. Binding of EhRab8A to EhCdc50 was also confirmed by reciprocal immunoprecipitation and blue-native polyacrylamide gel electrophoresis, the latter of which revealed an 87 kDa complex. Indirect immunofluorescence imaging with and without Triton X100 showed that endogenous EhCdc50 localized on the surface in the absence of permeabilizing agent but was observed on the intracellular structures and overlapped with the ER marker Bip when Triton X100 was used. Overexpression of N-terminal HA-tagged EhCdc50 impaired its translocation to the plasma membrane and caused its accumulation in the ER. As reported previously in other organisms, overexpression and accumulation of Cdc50 in the ER likely inhibited surface transport and function of the plasma membrane lipid flippase P4-ATPase. Interestingly, HA-EhCdc50-expressing trophozoites gained resistance to miltefosine, which is consistent with the prediction that HA-EhCdc50 overexpression caused its accumulation in the ER and mislocalization of the unidentified lipid flippase. Similarly, EhRab8A gene silenced trophozoites showed increased resistance to miltefosine, supporting EhRab8A-dependent transport of EhCdc50. This study demonstrated for the first time that EhRab8A mediates the transport of EhCdc50 and lipid flippase P4-ATPase from the ER to the plasma membrane. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Article
TBC1D21 Potentially Interacts with and Regulates Rap1 during Murine Spermatogenesis
Int. J. Mol. Sci. 2018, 19(11), 3292; https://doi.org/10.3390/ijms19113292 - 23 Oct 2018
Cited by 7 | Viewed by 1144
Abstract
Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic [...] Read more.
Few papers have focused on small guanosine triphosphate (GTP)-binding proteins and their regulation during spermatogenesis. TBC1D21 genes (also known as male germ cell RAB GTPase-activating protein MGCRABGAP) are related to sterility, as determined through cDNA microarray testing of human testicular tissues exhibiting spermatogenic defects. TBC1D21 is a protein specifically expressed in the testes that exhibits specific localizations of elongating and elongated spermatids during mammalian spermiogenesis. Furthermore, through co-immunoprecipitation (co-IP) and nano liquid chromatography–tandem mass spectrometry (nano LC–MS/MS), Rap1 has been recognized as a potential TBC1D21 interactor. This study determined the possible roles of Rap1 and TBC1D21 during mammalian spermiogenesis. First, the binding ability between Rap1 and TBC1D21 was verified using co-IP. Second, the stronger signals of Rap1 expressed in elongating and elongated murine spermatids extracted from testicular sections, namely spermatogonia, spermatocytes, and round spermatids, were compared. Third, Rap1 and TBC1D21 exhibited similar localizations at postacrosomal regions of spermatids and at the midpieces of mature sperms, through isolated male germ cells. Fourth, the results of an activating Rap1 pull-down assay indicated that TBC1D21 overexpression inactivates Rap1 activity in cell models. In conclusion, TBC1D21 may interact with and potentially regulate Rap1 during murine spermatogenesis. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Article
CDC42 Negatively Regulates Testis-Specific SEPT12 Polymerization
Int. J. Mol. Sci. 2018, 19(9), 2627; https://doi.org/10.3390/ijms19092627 - 05 Sep 2018
Cited by 7 | Viewed by 1598
Abstract
Septin (SEPT) genes encode well-preserved polymerizing GTP-binding cytoskeletal proteins. The cellular functions of SEPTs consist of mitosis, cytoskeletal remodeling, cell polarity, and vesicle trafficking through interactions with various types of cytoskeletons. We discovered that mutated SEPTIN12 in different codons resulted in [...] Read more.
Septin (SEPT) genes encode well-preserved polymerizing GTP-binding cytoskeletal proteins. The cellular functions of SEPTs consist of mitosis, cytoskeletal remodeling, cell polarity, and vesicle trafficking through interactions with various types of cytoskeletons. We discovered that mutated SEPTIN12 in different codons resulted in teratozoospermia or oligozoospermia. In mouse models with a defective Septin12 allele, sperm morphology was abnormal, sperm count decreased, and sperms were immotile. However, the regulators of SEPT12 are completely unknown. Some studies have indicated that CDC42 negatively regulates the polymerization of SEPT2/6/7 complexes in mammalian cell lines. In this study, we investigated whether CDC42 modulates SEPT12 polymerization and is involved in the terminal differentiation of male germ cells. First, through scanning electron microscopy analysis, we determined that the loss of Septin12 caused defective sperm heads. This indicated that Septin12 is critical for the formation of sperm heads. Second, CDC42 and SEPT12 were similarly localized in the perinuclear regions of the manchette at the head of elongating spermatids, neck region of elongated spermatids, and midpiece of mature spermatozoa. Third, wild-type CDC42 and CDC42Q61L (a constitutive-acting-mutant) substantially repressed SEPT12 polymerization, but CDC42T17N (a dominant-negative-acting mutant) did not, as evident through ectopic expression analysis. We concluded that CDC42 negatively regulates SEPT12 polymerization and is involved in terminal structure formation of sperm heads. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Article
Kinesin-2 Controls the Motility of RAB5 Endosomes and Their Association with the Spindle in Mitosis
Int. J. Mol. Sci. 2018, 19(9), 2575; https://doi.org/10.3390/ijms19092575 - 30 Aug 2018
Cited by 1 | Viewed by 1397
Abstract
RAB5 is a small GTPase that belongs to the wide family of Rab proteins and localizes on early endosomes. In its active GTP-bound form, RAB5 recruits downstream effectors that, in turn, are responsible for distinct aspects of early endosome function, including their movement [...] Read more.
RAB5 is a small GTPase that belongs to the wide family of Rab proteins and localizes on early endosomes. In its active GTP-bound form, RAB5 recruits downstream effectors that, in turn, are responsible for distinct aspects of early endosome function, including their movement along microtubules. We previously reported that, at the onset of mitosis, RAB5positive vesicles cluster around the spindle poles and, during metaphase, move along spindle microtubules. RNAi-mediated depletion of the three RAB5 isoforms delays nuclear envelope breakdown at prophase and severely affects chromosome alignment and segregation. Here we show that depletion of the Kinesin-2 motor complex impairs long-range movement of RAB5 endosomes in interphase cells and prevents localization of these vesicles at the spindle during metaphase. Similarly to the effect caused by RAB5 depletion, functional ablation of Kinesin-2 delays nuclear envelope breakdown resulting in prolonged prophase. Altogether these findings suggest that endosomal transport at the onset of mitosis is required to control timing of nuclear envelope breakdown. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Article
The Small Yeast GTPase Rho5 and Its Dimeric GEF Dck1/Lmo1 Respond to Glucose Starvation
Int. J. Mol. Sci. 2018, 19(8), 2186; https://doi.org/10.3390/ijms19082186 - 26 Jul 2018
Cited by 9 | Viewed by 1716
Abstract
Rho5 is a small GTPase of Saccharomyces cerevisiae and a homolog of mammalian Rac1. The latter regulates glucose metabolism and actin cytoskeleton dynamics, and its misregulation causes cancer and a variety of other diseases. In yeast, Rho5 has been implicated in different signal [...] Read more.
Rho5 is a small GTPase of Saccharomyces cerevisiae and a homolog of mammalian Rac1. The latter regulates glucose metabolism and actin cytoskeleton dynamics, and its misregulation causes cancer and a variety of other diseases. In yeast, Rho5 has been implicated in different signal transduction pathways, governing cell wall integrity and the responses to high medium osmolarity and oxidative stress. It has also been proposed to affect mitophagy and apoptosis. Here, we demonstrate that Rho5 rapidly relocates from the plasma membrane to mitochondria upon glucose starvation, mediated by its dimeric GDP/GTP exchange factor (GEF) Dck1/Lmo1. A function in response to glucose availability is also suggested by synthetic genetic phenotypes of a rho5 deletion with gpr1, gpa2, and sch9 null mutants. On the other hand, the role of mammalian Rac1 in regulating the action cytoskeleton does not seem to be strongly conserved in S. cerevisiae Rho5. We propose that Rho5 serves as a central hub in integrating various stress conditions, including a crosstalk with the cAMP/PKA (cyclic AMP activating protein kinase A) and Sch9 branches of glucose signaling pathways. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Article
The Role of Trio, a Rho Guanine Nucleotide Exchange Factor, in Glomerular Podocytes
Int. J. Mol. Sci. 2018, 19(2), 479; https://doi.org/10.3390/ijms19020479 - 06 Feb 2018
Cited by 7 | Viewed by 2218
Abstract
Nephrotic syndrome is a kidney disease featured by heavy proteinuria. It is caused by injury to the specialized epithelial cells called “podocytes” within the filtration unit of the kidney, glomerulus. Previous studies showed that hyperactivation of the RhoGTPase, Rac1, in podocytes causes podocyte [...] Read more.
Nephrotic syndrome is a kidney disease featured by heavy proteinuria. It is caused by injury to the specialized epithelial cells called “podocytes” within the filtration unit of the kidney, glomerulus. Previous studies showed that hyperactivation of the RhoGTPase, Rac1, in podocytes causes podocyte injury and glomerulosclerosis (accumulation of extracellular matrix in the glomerulus). However, the mechanism by which Rac1 is activated during podocyte injury is unknown. Trio is a guanine nucleotide exchange factor (GEF) known to activate Rac1. By RNA-sequencing, we found that Trio mRNA is abundantly expressed in cultured human podocytes. Trio mRNA was also significantly upregulated in humans with minimal change disease and focal segmental glomerulosclerosis, two representative causes of nephrotic syndrome. Reduced expression of Trio in cultured human podocytes decreased basal Rac1 activity, cell size, attachment to laminin, and motility. Furthermore, while the pro-fibrotic cytokine, transforming growth factor β1 increased Rac1 activity in control cells, it decreases Rac1 activity in cells with reduced Trio expression. This was likely due to simultaneous activation of the Rac1-GTPase activation protein, CdGAP. Thus, Trio is important in the basal functions of podocytes and may also contribute to glomerular pathology, such as sclerosis, via Rac1 activation. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review

Jump to: Research

Review
Small GTPases and Their Role in Vascular Disease
Int. J. Mol. Sci. 2019, 20(4), 917; https://doi.org/10.3390/ijms20040917 - 20 Feb 2019
Cited by 11 | Viewed by 1371
Abstract
Over eighty million people in the United States have cardiovascular disease that can affect the heart causing myocardial infarction; the carotid arteries causing stroke; and the lower extremities leading to amputation. The treatment for end-stage cardiovascular disease is surgical—either endovascular therapy with balloons [...] Read more.
Over eighty million people in the United States have cardiovascular disease that can affect the heart causing myocardial infarction; the carotid arteries causing stroke; and the lower extremities leading to amputation. The treatment for end-stage cardiovascular disease is surgical—either endovascular therapy with balloons and stents—or open reconstruction to reestablish blood flow. All interventions damage or destroy the protective inner lining of the blood vessel—the endothelium. An intact endothelium is essential to provide a protective; antithrombotic lining of a blood vessel. Currently; there are no agents used in the clinical setting that promote reendothelialization. This process requires migration of endothelial cells to the denuded vessel; proliferation of endothelial cells on the denuded vessel surface; and the reconstitution of the tight adherence junctions responsible for the formation of an impermeable surface. These processes are all regulated in part and are dependent on small GTPases. As important as the small GTPases are for reendothelialization, dysregulation of these molecules can result in various vascular pathologies including aneurysm formation, atherosclerosis, diabetes, angiogenesis, and hypertension. A better understanding of the role of small GTPases in endothelial cell migration is essential to the development for novel agents to treat vascular disease. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
Arf GAPs as Regulators of the Actin Cytoskeleton—An Update
Int. J. Mol. Sci. 2019, 20(2), 442; https://doi.org/10.3390/ijms20020442 - 21 Jan 2019
Cited by 12 | Viewed by 2752
Abstract
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these [...] Read more.
Arf GTPase-activating proteins (Arf GAPs) control the activity of ADP-ribosylation factors (Arfs) by inducing GTP hydrolysis and participate in a diverse array of cellular functions both through mechanisms that are dependent on and independent of their Arf GAP activity. A number of these functions hinge on the remodeling of actin filaments. Accordingly, some of the effects exerted by Arf GAPs involve proteins known to engage in regulation of the actin dynamics and architecture, such as Rho family proteins and nonmuscle myosin 2. Circular dorsal ruffles (CDRs), podosomes, invadopodia, lamellipodia, stress fibers and focal adhesions are among the actin-based structures regulated by Arf GAPs. Arf GAPs are thus important actors in broad functions like adhesion and motility, as well as the specialized functions of bone resorption, neurite outgrowth, and pathogen internalization by immune cells. Arf GAPs, with their multiple protein-protein interactions, membrane-binding domains and sites for post-translational modification, are good candidates for linking the changes in actin to the membrane. The findings discussed depict a family of proteins with a critical role in regulating actin dynamics to enable proper cell function. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
Roco Proteins: GTPases with a Baroque Structure and Mechanism
Int. J. Mol. Sci. 2019, 20(1), 147; https://doi.org/10.3390/ijms20010147 - 03 Jan 2019
Cited by 11 | Viewed by 1962
Abstract
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of genetically inherited Parkinson’s Disease (PD). LRRK2 is a large, multi-domain protein belonging to the Roco protein family, a family of GTPases characterized by a central RocCOR (Ras of complex proteins/C-terminal of [...] Read more.
Mutations in leucine-rich repeat kinase 2 (LRRK2) are a common cause of genetically inherited Parkinson’s Disease (PD). LRRK2 is a large, multi-domain protein belonging to the Roco protein family, a family of GTPases characterized by a central RocCOR (Ras of complex proteins/C-terminal of Roc) domain tandem. Despite the progress in characterizing the GTPase function of Roco proteins, there is still an ongoing debate concerning the working mechanism of Roco proteins in general, and LRRK2 in particular. This review consists of two parts. First, an overview is given of the wide evolutionary range of Roco proteins, leading to a variety of physiological functions. The second part focusses on the GTPase function of the RocCOR domain tandem central to the action of all Roco proteins, and progress in the understanding of its structure and biochemistry is discussed and reviewed. Finally, based on the recent work of our and other labs, a new working hypothesis for the mechanism of Roco proteins is proposed. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
Druggable Targets in Cyclic Nucleotide Signaling Pathways in Apicomplexan Parasites and Kinetoplastids against Disabling Protozoan Diseases in Humans
Int. J. Mol. Sci. 2019, 20(1), 138; https://doi.org/10.3390/ijms20010138 - 02 Jan 2019
Cited by 5 | Viewed by 1826
Abstract
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) [...] Read more.
Cell signaling in eukaryotes is an evolutionarily conserved mechanism to respond and adapt to various environmental changes. In general, signal sensation is mediated by a receptor which transfers the signal to a cascade of effector proteins. The cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are intracellular messengers mediating an extracellular stimulus to cyclic nucleotide-dependent kinases driving a change in cell function. In apicomplexan parasites and kinetoplastids, which are responsible for a variety of neglected, tropical diseases, unique mechanisms of cyclic nucleotide signaling are currently identified. Collectively, cyclic nucleotides seem to be essential for parasitic proliferation and differentiation. However, there is no a genomic evidence for canonical G-proteins in these parasites while small GTPases and secondary effector proteins with structural differences to host orthologues occur. Database entries encoding G-protein-coupled receptors (GPCRs) are still without functional proof. Instead, signals from the parasite trigger GPCR-mediated signaling in the host during parasite invasion and egress. The role of cyclic nucleotide signaling in the absence of G-proteins and GPCRs, with a particular focus on small GTPases in pathogenesis, is reviewed here. Due to the absence of G-proteins, apicomplexan parasites and kinetoplastids may use small GTPases or their secondary effector proteins and host canonical G-proteins during infection. Thus, the feasibility of targeting cyclic nucleotide signaling pathways in these parasites, will be an enormous challenge for the identification of selective, pharmacological inhibitors since canonical host proteins also contribute to pathogenesis. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
Roco Proteins and the Parkinson’s Disease-Associated LRRK2
Int. J. Mol. Sci. 2018, 19(12), 4074; https://doi.org/10.3390/ijms19124074 - 17 Dec 2018
Cited by 4 | Viewed by 1474
Abstract
Small G-proteins are structurally-conserved modules that function as molecular on-off switches. They function in many different cellular processes with differential specificity determined by the unique effector-binding surfaces, which undergo conformational changes during the switching action. These switches are typically standalone monomeric modules that [...] Read more.
Small G-proteins are structurally-conserved modules that function as molecular on-off switches. They function in many different cellular processes with differential specificity determined by the unique effector-binding surfaces, which undergo conformational changes during the switching action. These switches are typically standalone monomeric modules that form transient heterodimers with specific effector proteins in the ‘on’ state, and cycle to back to the monomeric conformation in the ‘off’ state. A new class of small G-proteins called “Roco” was discovered about a decade ago; this class is distinct from the typical G-proteins in several intriguing ways. Their switch module resides within a polypeptide chain of a large multi-domain protein, always adjacent to a unique domain called COR, and its effector kinase often resides within the same polypeptide. As such, the mechanisms of action of the Roco G-proteins are likely to differ from those of the typical G-proteins. Understanding these mechanisms is important because aberrant activity in the human Roco protein LRRK2 is associated with the pathogenesis of Parkinson’s disease. This review provides an update on the current state of our understanding of the Roco G-proteins and the prospects of targeting them for therapeutic purposes. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
Perspectives of RAS and RHEB GTPase Signaling Pathways in Regenerating Brain Neurons
Int. J. Mol. Sci. 2018, 19(12), 4052; https://doi.org/10.3390/ijms19124052 - 14 Dec 2018
Cited by 9 | Viewed by 3264
Abstract
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their [...] Read more.
Cellular activation of RAS GTPases into the GTP-binding “ON” state is a key switch for regulating brain functions. Molecular protein structural elements of rat sarcoma (RAS) and RAS homolog protein enriched in brain (RHEB) GTPases involved in this switch are discussed including their subcellular membrane localization for triggering specific signaling pathways resulting in regulation of synaptic connectivity, axonal growth, differentiation, migration, cytoskeletal dynamics, neural protection, and apoptosis. A beneficial role of neuronal H-RAS activity is suggested from cellular and animal models of neurodegenerative diseases. Recent experiments on optogenetic regulation offer insights into the spatiotemporal aspects controlling RAS/mitogen activated protein kinase (MAPK) or phosphoinositide-3 kinase (PI3K) pathways. As optogenetic manipulation of cellular signaling in deep brain regions critically requires penetration of light through large distances of absorbing tissue, we discuss magnetic guidance of re-growing axons as a complementary approach. In Parkinson’s disease, dopaminergic neuronal cell bodies degenerate in the substantia nigra. Current human trials of stem cell-derived dopaminergic neurons must take into account the inability of neuronal axons navigating over a large distance from the grafted site into striatal target regions. Grafting dopaminergic precursor neurons directly into the degenerating substantia nigra is discussed as a novel concept aiming to guide axonal growth by activating GTPase signaling through protein-functionalized intracellular magnetic nanoparticles responding to external magnets. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Review
Rac GTPases in Hematological Malignancies
Int. J. Mol. Sci. 2018, 19(12), 4041; https://doi.org/10.3390/ijms19124041 - 14 Dec 2018
Cited by 10 | Viewed by 1574
Abstract
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily [...] Read more.
Emerging evidence suggests that crosstalk between hematologic tumor cells and the tumor microenvironment contributes to leukemia and lymphoma cell migration, survival, and proliferation. The supportive tumor cell-microenvironment interactions and the resulting cellular processes require adaptations and modulations of the cytoskeleton. The Rac subfamily of the Rho family GTPases includes key regulators of the cytoskeleton, with essential functions in both normal and transformed leukocytes. Rac proteins function downstream of receptor tyrosine kinases, chemokine receptors, and integrins, orchestrating a multitude of signals arising from the microenvironment. As such, it is not surprising that deregulation of Rac expression and activation plays a role in the development and progression of hematological malignancies. In this review, we will give an overview of the specific contribution of the deregulation of Rac GTPases in hematologic malignancies. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
Activated Rho GTPases in Cancer—The Beginning of a New Paradigm
Int. J. Mol. Sci. 2018, 19(12), 3949; https://doi.org/10.3390/ijms19123949 - 08 Dec 2018
Cited by 32 | Viewed by 2270
Abstract
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted [...] Read more.
Involvement of Rho GTPases in cancer has been a matter of debate since the identification of the first members of this branch of the Ras superfamily of small GTPases. The Rho GTPases were ascribed important roles in the cell, although these were restricted to regulation of cytoskeletal dynamics, cell morphogenesis, and cell locomotion, with initially no clear indications of direct involvement in cancer progression. This paradigm has been challenged by numerous observations that Rho-regulated pathways are often dysregulated in cancers. More recently, identification of point mutants in the Rho GTPases Rac1, RhoA, and Cdc42 in human tumors has finally given rise to a new paradigm, and we can now state with confidence that Rho GTPases serve as oncogenes in several human cancers. This article provides an exposé of current knowledge of the roles of activated Rho GTPases in cancers. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Figure 1

Review
The Many Faces of Rap1 GTPase
Int. J. Mol. Sci. 2018, 19(10), 2848; https://doi.org/10.3390/ijms19102848 - 20 Sep 2018
Cited by 18 | Viewed by 2358
Abstract
This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably [...] Read more.
This review addresses the issue of the numerous roles played by Rap1 GTPase (guanosine triphosphatase) in different cell types, in terms of both physiology and pathology. It is one among a myriad of small G proteins with endogenous GTP-hydrolyzing activity that is considerably stimulated by posttranslational modifications (geranylgeranylation) or guanine nucleotide exchange factors (GEFs), and inhibited by GTPase-activating proteins (GAPs). Rap1 is a ubiquitous protein that plays an essential role in the control of metabolic processes, such as signal transduction from plasma membrane receptors, cytoskeleton rearrangements necessary for cell division, intracellular and substratum adhesion, as well as cell motility, which is needed for extravasation or fusion. We present several examples of how Rap1 affects cells and organs, pointing to possible molecular manipulations that could have application in the therapy of several diseases. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Review
Rab38 Mutation and the Lung Phenotype
Int. J. Mol. Sci. 2018, 19(8), 2203; https://doi.org/10.3390/ijms19082203 - 27 Jul 2018
Cited by 7 | Viewed by 1997
Abstract
Rab38 is highly expressed in alveolar type II cells, melanocytes, and platelets. These cells are specifically-differentiated cells and contain characteristic intracellular organelles called lysosome-related organelles, i.e., lamellar bodies in alveolar type II cells, melanosomes in melanocytes, and dense granules in platelets. There are [...] Read more.
Rab38 is highly expressed in alveolar type II cells, melanocytes, and platelets. These cells are specifically-differentiated cells and contain characteristic intracellular organelles called lysosome-related organelles, i.e., lamellar bodies in alveolar type II cells, melanosomes in melanocytes, and dense granules in platelets. There are Rab38-mutant rodents, i.e., chocolate mice and Ruby rats. While chocolate mice only show oculocutaneous albinism, Ruby rats show oculocutaneous albinism and prolonged bleeding time and, hence, are a rat model of Hermansky-Pudlak syndrome (HPS). Most patients with HPS suffer from fatal interstitial pneumonia by middle age. The lungs of both chocolate mice and Ruby rats show remarkably increased amounts of lung surfactant and conspicuously enlarged lysosome-related organelles, i.e., lamellar bodies, which are also characteristic of the lungs in human HPS. There are 16 mutant HPS-mouse strains, of which ten mutant genes have been identified to be causative in patients with HPS thus far. The gene products of eight of the ten genes constitute one of the three protein complexes, i.e., biogenesis of lysosome-related organelle complex-1, -2, -3 (BLOC-1, -2, -3). Patients with HPS of the mutant BLOC-3 genotype develop interstitial pneumonia. Recently, BLOC-3 has been elucidated to be a guanine nucleotide exchange factor for Rab38. Growing evidence suggests that Rab38 is an additional candidate gene of human HPS that displays the lung phenotype. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Review
Functions of Rhotekin, an Effector of Rho GTPase, and Its Binding Partners in Mammals
Int. J. Mol. Sci. 2018, 19(7), 2121; https://doi.org/10.3390/ijms19072121 - 20 Jul 2018
Cited by 4 | Viewed by 2349
Abstract
Rhotekin is an effector protein for small GTPase Rho. This protein consists of a Rho binding domain (RBD), a pleckstrin homology (PH) domain, two proline-rich regions and a C-terminal PDZ (PSD-95, Discs-large, and ZO-1)-binding motif. We, and other groups, have identified various binding [...] Read more.
Rhotekin is an effector protein for small GTPase Rho. This protein consists of a Rho binding domain (RBD), a pleckstrin homology (PH) domain, two proline-rich regions and a C-terminal PDZ (PSD-95, Discs-large, and ZO-1)-binding motif. We, and other groups, have identified various binding partners for Rhotekin and carried out biochemical and cell biological characterization. However, the physiological functions of Rhotekin, per se, are as of yet largely unknown. In this review, we summarize known features of Rhotekin and its binding partners in neuronal tissues and cancer cells. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Review
Rho GTPases in Intellectual Disability: From Genetics to Therapeutic Opportunities
Int. J. Mol. Sci. 2018, 19(6), 1821; https://doi.org/10.3390/ijms19061821 - 20 Jun 2018
Cited by 26 | Viewed by 2837
Abstract
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction [...] Read more.
Rho-class small GTPases are implicated in basic cellular processes at nearly all brain developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity. GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs) partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity has been linked with intellectual disability (ID) and other neurodevelopmental conditions that comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes associated with these conditions are emerging and include altered neuronal networking, unbalanced excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal networks, there is an increasing possibility that selective inhibitors and activators might be designed via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in alleviation of the cognitive condition. Here we review all knowledge in support of this possibility. Full article
(This article belongs to the Special Issue Small GTPases)
Show Figures

Graphical abstract

Back to TopTop