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Abstract: Rho-class small GTPases are implicated in basic cellular processes at nearly all brain
developmental steps, from neurogenesis and migration to axon guidance and synaptic plasticity.
GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses
required for the construction of neuronal networks, as well as for synaptic function and plasticity.
Rho GTPases are highly regulated by a complex set of activating (GEFs) and inactivating (GAPs)
partners, via protein:protein interactions (PPI). Misregulated RhoA, Rac1/Rac3 and cdc42 activity
has been linked with intellectual disability (ID) and other neurodevelopmental conditions that
comprise ID. All genetic evidences indicate that in these disorders the RhoA pathway is hyperactive
while the Rac1 and cdc42 pathways are consistently hypoactive. Adopting cultured neurons for
in vitro testing and specific animal models of ID for in vivo examination, the endophenotypes
associated with these conditions are emerging and include altered neuronal networking, unbalanced
excitation/inhibition and altered synaptic activity and plasticity. As we approach a clearer definition
of these phenotype(s) and the role of hyper- and hypo-active GTPases in the construction of neuronal
networks, there is an increasing possibility that selective inhibitors and activators might be designed
via PPI, or identified by screening, that counteract the misregulation of small GTPases and result in
alleviation of the cognitive condition. Here we review all knowledge in support of this possibility.
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1. Introduction

Small GTPases of the Rho class comprise a set of highly conserved signaling GTPases, including
RhoA, RhoB and RhoC (the Rho subclass), Rac1, Rac2, Rac3 and RhoG (the Rac subclass) and cdc42,
TC10/RhoQ and TCL/RhoJ (the cdc42 subclass). The most extensively studied members of the Rho
family in the nervous system are RhoA (ras homologous member A), Rac1 (ras related C3 botulinum
toxin substrate 1) and cdc42 (cell division cycle 42) [1].

Similar to other signaling GTPases, they cycle between GTP (active) and GDP (inactive)-bound
states. The GTP/GDP cycle is regulated by complex protein:protein interactions (PPI) between the
GTPase and various partners that either increase (Guanine nucleotide Exchange Factors, GEFs) or
decrease (GTPase-activating proteins, GAP) their function to activate downstream targets.

Although the GTPase has an intrinsic enzymatic ability to cleave GTP to GDP, switching in the
inactive state, commonly we refer to hyper- and hypo-active GTPase as its increased or decreased
function as a component of a signal transduction pathway.
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Over eighty GEFs and seventy GAPs have been identified, suggesting that Rho GTPase regulation
is exquisitely complex. This review will focus on the role of Rho GTPases on neurodevelopement,
examine the known GTPase regulators mutated in Intellectual Disability (ID) and discuss emerging
opportunities for therapeutic approaches.

2. The Molecular and Cellular Processes Controlled by Rho GTPases in the Construction of
Neural Network

GTPases of the Rho class are molecular hubs that link extracellular cues with changes in
intracellular cytoskeleton dynamics. Changes in cytoskeleton are required to execute cell polarity and
cell motility processes such as extending and retracting protrusion, cell migration and change in cell
shape [2,3].

Rho GTPases are activated by growth factors, adhesive ligands and guidance cue receptors
such as slit, ephrins, netrins, and semaphorins [4,5]. Non-receptor tyrosine kinases, such as Focal
Adhesion Kinase (FAK) and Src Family Kinases (SFKs) impact on Rho GTPases and regulate actin
dynamic and cell motility [6–9]. Integrin receptors and adhesion molecules (N-cadherin) activate Rho
GTPases [10,11]. Activated ion channels, such as α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic
receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) also impact on Rho GTPases [12].

Cytosolic [Ca2+] fluctuations at the growth cone influence Rho GTPase activity and induce changes
in the actin cytoskeleton [13,14]. For example, Brain-derived neurotrophic factor (BDNF) and netrin
activate [Ca2+]-dependent calmodulin kinase II (CaMKII), which increases Rac1/cdc42 and decreases
RhoA activity to promote axon outgrowth [15].

Downstream, GTPases regulate several aspects of cytoskeleton assembly/disassembly, such as
actin filament polymerization and severing, actomyosin contractility and microtubule elongation [16].
Specifically, RhoA controls nucleation, elongation, branching and severing of the actin filament network
via the Rho kinase-LIM domain kinase (ROCK-LIMK) pathway that impacts on the actin-binding
protein actin depolymerizing factor (ADF)/cofilin [17–20]. Rac1 and cdc42 also govern actin
cytoskeletal dynamics via ADF/cofilin, however they utilize the p21-activated kinase (PAK)-LIMK
pathway [21,22]. Rac1 and cdc42 act on actin dynamic also via WAS protein family member (WAVE)
and Wiskott-Aldrich syndrome like (N-WASP), respectively [4]. Actomyosin contractility is regulated
by RhoA through the ROCK-myosin light chain (MLC) pathway and by cdc42 via the PAK-MLC kinase
(MLCK) pathway [23].

Actin polymerization, increased myosin II motor function and active association of actin-binding
proteins with adhesion complexes promote neurite elongation and leading edge progression.
The phosphorylation of shootin1 downstream of Rac has been recognized as a key mechanism to
couple enhanced actin flow with cell adhesion via a linking bridge, known as a “clutch” [22,24,25].

GTPases also control microtubule elongation [26]: Rac1 and cdc42 use PAK kinases as downstream
targets, which can act through Op18 and control microtubule growth. Moreover Rac1 and
cdc42 regulate neuronal migration and the formation of leading process of migrating neurons via
the activation of the downstream c-Jun N-terminal kinase (JNK)-microtubule pathway through
the association with IQ motif containing GTPase activating protein 1 (IQGAP1) [27,28]. Instead RhoA
acts on the regulation of microtubule stabilization through Dia [29,30].

The Rho, Rac1 and cdc42 trasduction pathways converge and diverge at different levels of the
pathways. All these convergent and divergent pathways are tightly controlled by a complex and
multi-layered set of regulators (GAPs, GEFs and other less well understood). For example RhoA, Rac1
and cdc42 promote actin polymerization via LIMK activation, while actomyosin contractility promoted
by RhoA is inhibited by Rac1 and cdc42 through inhibition of MLCK [23].

The actions of Rho GTPases depend on the developmental time. At early stages the control of
cytoskeletal dynamics is essential for the acquisition of cell polarity, hence for neurogenesis; indeed loss
of RhoA results in three distinct cortical malformations: (1) a defect in the proliferation of progenitor
cells leading to a bigger cerebral cortex; (2) a change in the morphology of radial glial cells with
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the formation of a subcortical band eterotopia; (3) an increase in the speed of migrating newborn
neurons [31]. At later developmental stages, the control of cytoskeletal dynamics is essential for
axonogenesis, dendritogenesis, axon guidance and neuronal migration [3,4], hence required for the
construction of the excitatory and inhibitory networks and their complexity. For this reason, changes
of the spatiotemporal activity of small GTPases, such as those due to mutations in GAPs and GEFs,
affect neuronal migration, dendrite extension and complexity, axon extension and guidance, and spine
shape and plasticity, resulting in ID and other cognitive deficits.

Rac and cdc42 are generally associated with promotion of elongation, branching, and complexity,
while RhoA is generally associated with the opposite: Inhibition of elongation, branching, and
complexity [32]. However this notion is based on in vitro studies that use overexpression of
dominant-negative (DN) and constitutively-active (CA) mutants, while in vivo studies have not
always confirmed this notion.

In adult neurons, small GTPases control dynamic events of the actin cytoskeleton of the dendritic
spine (the postsynaptic compartment) of the excitatory synapse [33–35], thus participating in the
synaptic plasticity and the maturation of cognitive functions.

Finally, a novel function of small GTPases in the control of ROS production has recently
been shown [36,37]. Whether this could represent a unifying mechanisms that participates in the
endophenotype leading to ID remains to be further investigated.

2.1. GAP and GEF at the Growth Cone

RhoA, Rac1 and cdc42 connect a wide spectrum of external guidance molecules to cytoskeletal
changes and thereby regulate the growth cone morphology and dynamic of the growth cone and assure
the directed elongation of neuronal processes. A tight regulation through GAPs (such as α-chimaerin,
ArhGAP15 and SrGAPs) and GEFs (such as ALS2, Sos, βPix, Kalirin, Trio, Ephexin1, Lfc and Intersectin) is
determinant for controlling growth cone protrusion, growth cone collapse and neurite retraction (Figure 1).

α-chimaerin is a GAP for Rac1 that mediates EphrinB3/EphA4 signaling during the formation of
motor neuron circuits, via inactivation of Rac1. In cultured hippocampal neurons, EphrinA-induced
growth cone collapse is associated with tyrosine phosphorylation of α2-chimaerin and inhibition of
the Rac-PAK pathway [38,39].

Trio is essential for netrin1-induced axon elongation and guidance. Trio displays two GEF domains
of distinct specificity: Ras guanine nucleotide exchange factor1 (GEFD1) activates the small GTPases
RhoG and Rac1, whereas GEFD2 acts on RhoA. Trio-induced neurite outgrowth is mediated by the
GEFD1-dependent activation of RhoG, previously shown to be part of the nerve growth factor (NGF)
pathway [40]. The chaperone activity of Hsc70 is required for Rac1 activation by Trio and this function
underlies netrin-1/DCC-dependent axon outgrowth and guidance [41]. In response to netrin-1 Trio
is phosphorylated (Y2622) by Src family kinases, and this step is essential for the regulation of the
DCC/Trio signaling complex during axon outgrowth [42].

The chemorepulsive molecule Slit signals via the Robo1/2 receptors. SrGAPs are recruited
downstream of this signaling, locally inactivates Rho GTPases thereby reducing actin polymerization
asymmetrically, and leading to subsequent turning of the growth cone away from Slit [43]. In response
to the Slit/Robo activation, Sos is also recruited to the plasma membrane where it forms a ternary
complex with Robo1/2 and the SH3-SH2 adaptor protein DOCK to regulate Rac-dependent
cytoskeleton rearrangement [44].

Lfc localizes at the growth cones of developing neurons and negatively regulates neurite sprouting
and axon formation via its GEF activity on the Rho signaling pathway. Tctex-1, a dynein light
chain implicated in axon outgrowth by modulating actin dynamics and Rac activity, colocalizes and
physically interacts with Lfc, thereby inhibiting its GEF activity, decreasing Rho-GTP levels and
functionally antagonizing Lfc during neuritogenesis [45].

ArhGAP15 is a Rac1-specific brain-specific GAP and its loss leads to an overall reduced efficiency
of neurite elongation and branching, and a simpler morphology of pyramidal and hippocampal
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neurons [21,25]. Finally, ALS2/Alsin is a Rac1 GEF, that colocalizes with Rac1 within growth cones
and promotes neurite outgrowth [46]. Interestingly, ALS2 has been proposed also as a Rac1 effector,
thus acting as a bifunctional protein [47].
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2.2. GAP and GEF at the Leading Edge 

The molecules that regulate Rho GTPases in this location are illustrated in Figure 2. Rho 
GTPases present at the leading edge participate in the process of neuronal migration, both radial and 
tangential. Both types of migration of immature GABAergic neurons are impaired in mice with a 
combined loss of Rac1 and Rac3 [48]. Loss of ArhGAP15 leads to hyperactive Rac1 pathway and 

Figure 1. Regulations of Rho GTPases at the growth cone, by GTPase-activating proteins (GAPs) and
Guanine nucleotide Exchange Factors (GEFs) implicated in Intellectual Disability. Green and red boxes
surround GEF and GAP proteins, respectively. Asterisks indicate that are mutated in Intellectual
Disability (ID) and other human diseases comprising ID. Circled P indicates phosphorylation.
Arrows indicate activation, T bars indicate inhibition. A representative small magnification image of
a growth cone is provided in the inset (top left). ROCK, Rho kinase-LIM domain kinase; MLC, myosin
light chain; PAK1-2-3, p21-activated kinase 1-2-3; LIMK1-2, Rho kinase-LIM domain kinase 1-2.

2.2. GAP and GEF at the Leading Edge

The molecules that regulate Rho GTPases in this location are illustrated in Figure 2. Rho GTPases
present at the leading edge participate in the process of neuronal migration, both radial and tangential.
Both types of migration of immature GABAergic neurons are impaired in mice with a combined loss
of Rac1 and Rac3 [48]. Loss of ArhGAP15 leads to hyperactive Rac1 pathway and affects the tangential
migration of hippocampal interneurons [21,48]. Loss of α-chimaerin results in aberrant radial migration
and accumulation of ectopic neurons in subcortical regions [49]. SrGAP2 is required for the efficient
production of branches of the leading process [50]. Notably, all these GAP molecules are active on Rac1.
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Figure 2. Regulations of Rho GTPases at the leading edge of a migrating neuron, by GAPs
and GEFs implicated in Intellectual Disability. Green and red boxes surround GEF and GAP
proteins, respectively. Circled P indicates phosphorylation. Arrows indicate activation, T bars
indicate inhibition. A representative small magnification image of a migrating neuron with an evident
leading edge is provided in the inset (top left). ROCK, Rho kinase-LIM domain kinase; MLC, myosin
light chain; PAK1-2-3, p21-activated kinase 1-2-3; LIMK1-2, Rho kinase-LIM domain kinase 1-2.

Homozygous frameshift mutations in the ARHGEF2 gene have been identified as cause of ID.
The loss of normal ARHGEF2 activity leads to reduced activation of the RhoA-ROCK-MLC pathway,
which in turn is crucial for cell migration. Indeed, ArhGEF2−/− mice exhibit altered migration of
precerebellar immature neurons [51].

AUTS2 (Autism susceptibility candidate 2 gene) acts as an upstream factor of Rac1 and cdc42,
regulating the cytoskeletal rearrangements in neural cells. Indeed AUTS2 induces lamellipodia in
neuroblastoma cells and promotes neurite extensions of cultured hippocampal neurons, via activation
of Rac1 [52]. The AUTS2-Rac1 pathway is required for neuronal migration and subsequent
neuritogenesis in the cerebral cortex [53]. Conversely, AUTS2 acts as a suppressor of cdc42 and
inhibits filopodia formation [53].

The two ROCK isoforms ROCK1 and ROCK2 differentially regulate distinct pathways
downstream of RhoA, and their coordinated activities drive cell polarity during migration and
synaptogenesis. ROCK1 forms stable actomyosin filament bundles that initiate front-back and dendritic
spine polarity. In contrast, ROCK2 regulates contractile forces and Rac1 activity at the leading edge and
at the spine head; it also specifically regulates ADF/cofilin-mediated actin remodeling that underlies
the maturation of adhesions and the postsynaptic density (PSD) of dendritic spines [54].

RhoG plays a key role in regulating actin dynamics at the leading edge during neural migration, by
acting downstream of anillin [55], but its regulation through GAPs and GEFs has been poorly explored.
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2.3. GAP and GEF at the Dendritic Spine

Rho GTPases have been shown to control dendritic spine morphology and plasticity [56].
In general, RhoA activation has a negative effect on spine growth and maturation, whereas Rac1
and cdc42 promote spine formation and maintenance [57]. The specific molecules that regulate Rho
GTPases in this location are illustrated in Figure 3. Recent proteomic efforts focused on the PSD place
GTPases and their regulatory machinery in a highly connected domain-domain interaction context,
linked to several other molecules implicated in neurodevelopmental disorders, including ID [58].
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Figure 3. Regulations of Rho GTPases at the dendritic spine of an excitatory synapse, by GAPs and GEFs
implicated in Intellectual Disability. Green and red boxes surround GEF and GAP proteins, respectively.
Asterisks indicate genes that are mutated in ID and other human diseases comprising ID. Circled P
indicates phosphorylation. Arrows indicate activation, T bars indicate inhibition. A representative
small magnification image of a dendritic spine is provided in the inset (top left). ROCK, Rho kinase-LIM
domain kinase; RICS, Rho GTPase activating protein 32; DOCK10, dedicator of cytokinesis 10; RICH2,
Rho GTPase activating protein 44; PAK1-2-3, p21-activated kinase 1-2-3; LIMK1-2, Rho kinase-LIM
domain kinase 1-2.

SrGAPs (including SrGAP2 and SrGAP3) are required for the formation of dendritic spines of
excitatory synapses, in vivo. Neurons in which SrGAP2 was silenced displayed immature-shaped
spines with smaller heads and longer necks, while upon srGAP2 over-expression most spines display
an enlarged and mushroom morphology, thus suggesting that srGAP2 is required to promote
spine maturation [50]. SrGAP3 null mice have significantly fewer spines than controls, and even
heterozygous mice have fewer mature mushroom-shaped spines [43]. Wave1 mutant mice, in which
the Wave1 mutation results in loss of binding between Wave1 and SrGAP3, display spine defects [59].

RICH2 is a Rho-GAP which regulates synaptic spine plasticity. RICH2 was identified as
an interaction partner of the scaffolding protein SHANK3 at the PSD. In the amygdala of RICH2 null
mice RhoA pathway is hyperactive, actin polymerization is reduced and the density of mature spines
is decreased [60]. Their hippocampus and cerebellum display increased multiple spine synapses along
with altered receptor composition and actin polymerization [60]. RICH2 null mice display a significant
fear for novel objects and increased stereotypic behavior as well as impairment of motor learning.
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Loss of α2-chimaerin induces the formation of aberrant polymorphic dendritic spines, acting via
Rac1 hyperactivity. Upon loss of α2-chimaerin the complexity of dendritic arbor is reduced and the
number of spines that appear poly-innervated is increased [61].

The knockdown of Myo9b or of Rho GTPase activating protein 32 (RICS) results in defects of
dendritic morphology, reverted by the inhibition of RhoA/ROCK pathway. These observations provide
further supporting evidence for a key physiological function of RhoA in the regulation of dendritic
development [62].

Rho GTPase activating protein 33 (NOMA-GAP) acts through the inactivation of cdc42 and its
depletion leads to a marked reduction in the number of dendrite branches of layer 2/3 neurons and
mislocalization of glutamatergic receptors [63–65]. Endocytic recycling of AMPARs at the excitatory
synapse is important for the supply of a mobile pool of AMPARs required for synaptic potentiation.
This local recycling of AMPARs critically relies on the presence of an endocytic zone (EZ) near the
PSD. The precise mechanisms that couple the EZ to the PSD remain still largely elusive, with the
large GTPase Dynamin-3 and the multimeric adaptor protein Homer1 as the suspected main players.
The PPI between Ophn1 and Homer1b/c is crucial for the positioning of the EZ adjacent to the PSD.
Disruption of this interaction causes a displacement of EZs from the PSD, impaired AMPAR recycling
and reduced AMPAR accumulation at synapses [66].

Loss of the Rac GEF Kalirin results in reduced spine density and reduced dendrite complexity in
layer V pyramidal neurons of the frontal cortex [67,68].

Finally, DOCK10 GEF and Ephexin5 are implicated in dendritic spine formation and, the first one
acting via Rac1 and cdc42, the second via RhoA [69,70].

The existence of a large number of GAPs and GEFs suggests that some of them are specific
to a subcellular compartment and/or they are expressed in different times during development.
Only two molecules are shared in all three compartments (the growth cone, the leading edge and the
dendritic spine); these are SrGAPs and α-chimaerins [38,39,43,49,61]. This suggests that, while GTPases
represent the molecular hubs, the regulation and specificity—hence the adequate cell response—is
provided by the regulators. Clearly a better comprehension of the spatiotemporal regulation of Rho
GTPases is needed and this could derive from proteomic and interactomic data. Moreover, we note that
most studies on Rho GTPases have been done in excitatory synapses, although inhibitory synapses are
also plastic. Since excitation/inhibition imbalance is frequently observed in animal models of ID and
Autism Spectrum Disorder (ASD), these synapses are evidently important for neurologic and cognitive
activities in both the cortex and hippocampus [71,72]. Future studies are needed in this direction.

3. Rho GTPases and Intellectual Disability

Intellectual Disability (ID) is a common neurodevelopmental disorder in children, characterized
by significant limitations in both intellectual functioning and in adaptive behaviors as expressed in
conceptual, social and practical adaptive skills. Estimates of the prevalence of ID among children in the
United States based on epidemiologic studies range from 9 to 36 in 1000, depending on the inclusion
criteria [73–75]. ID is manifested as both syndromic and nonsyndromic forms, depending on whether
the disability is associated with other symptoms. A large fraction of ID is linked to the X-chromosome,
and are known as X-linked ID, leading to a higher prevalence of ID in males versus females.

Hundreds of mutations have been detected in ID, both syndromic and nonsyndromic. X-linked
ID has been associated with mutations in more than eighty genes on the X-chromosome, some of which
code for regulators of the small-GTPase family including: oligophrenin 1 (OPHN1), PAK3, Rac/Cdc42
guanine nucleotide exchange factor 6 (αPIX), ARHGEF9, FYVE, RhoGEF and PH domain containing 1 (FGD1)
and trio Rho guanine nucleotide exchange factor (TRIO) [71,76–78].

Limited evidence is available that the cerebral cortex and the hippocampus of ID children
have structural differences. Neuroimaging data suggest differences with limited diagnostic and
research value [79–81]. Conversely, genetically modified mice are currently the key in vivo approach
to investigate the role of gene mutations in ID and related phenotypes, for determining the basic
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mechanisms, the neurobiological substrates and the neural basis of cognitive function as well as for
testing the efficacy of potential therapeutic drugs [82]. Based on a wide spectrum of experimental
data from animal models and cultured neurons, it is widely accepted that the cognitive deficits of
ID are linked to defects in neuronal networking, synaptic plasticity and the excitation/inhibition
balance of the cerebral cortex and hippocampus, and these alterations result in abnormal information
processing [83–88]. However, a unifying mechanisms is still elusive. In this direction, recent proteomic
and interactomic data, obtained from sinaptosomes, intersected with the gene mutations linked to
neurodevelopmental disorders including ID, substantially confirm that “GTPase control” is a highly
connected molecular hub [58].

Here we review in details the functions of the main genes mutated in human ID, analyzing
the consequence of these mutations in culture systems and in the mouse models currently available,
in terms of neuronal morphology, dendrite and axon complexity, spine shape and density, synaptic
physiology and plasticity. Table 1 summarizes the main cellular phenotypes of mouse models of ID,
related to altered GTPase functions, focusing on dendrites, axon, spine and synaptic properties.

3.1. Mutations of OPHN1

The Oligophrenin-1 (OPHN-1) gene, located on chromosome Xq12, codes for a GAP that negatively
modulates RhoA activity by promoting GTP hydrolysis [89]. A number of loss-of-function mutations
of the OPHN1 gene have been detected in patients with mild X-linked ID [90–93].

Ophn1 is ubiquitously expressed in the developing and adult central nervous
system (CNS) [89,90,94,95]. The protein is detected both in glial cells and neurons where it
colocalizes with F-actin, notably at the tip of growing dendrites [89] and at both sides of the
synapse [66,96–98].

In vitro and in vivo studies demonstrated that the loss of OPHN1 results in increased activity of
the RhoA GTPase, and to a lesser extent Rac1 and cdc42, and this affects dendritic tree complexity and
synaptic functions of hippocampal neurons [90,98–101]. Indeed the inactivation of OPHN1 function
induces reduced evoked and spontaneous excitatory postsynaptic currents (EPSCs) and inhibitory
postsynaptic currents (IPSCs), associated with decreased readily releasable pool and vesicle recycling,
indicating altered neurotransmitter release from the presynaptic processes [94,101].

This altered short-term plasticity is associated with a reduction in mature mushroom-shaped
dendritic spines [94,99]. It would be interesting to investigate whether the dysfunction in the
neurotransmitter release is the cause or the consequence of the immaturity of dendritic spines in
Ophn1 knock-out (KO) mice.

The loss of Ophn1 in mice also recapitulates some behavioral, social, and cognitive impairments of
the human phenotypes. Indeed Ophn1 KO mice exhibit behavioral defects in spatial memory together
with impairment in social behavior, lateralization, and novelty driven hyperactivity [94].

3.2. Mutations of RAC1

RAC1 is a highly conserved gene, located on chromosome 7p22.1, coding for the small GTPase
RAC1 and the neural-specific, developmentally regulated isoform RAC1B [102–104]. Rac1 is strongly
enriched at the PSD [105].
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Table 1. The main cellular phenotypes of ID mouse models, related to altered GTPase functions, focusing on dendrites, axon, spine and synaptic properties.

Gene Mutated in ID Genetic Mouse Models GTPase Pathway Activity (1) Major Phenotypes (2) References

Dendrite and Axon Development

Oligophrenin1 Ophn1−/y ↑ RhoA ↓ dendritic tree complexity of dentate gyrus granule neurons Powell et al., 2012 [101]

α-PIX (ArhGEF6) α-Pix KO ↓ Rac1 and cdc42 ↑ dendrite length in CA1 hippocampus Ramakers et al., 2012 [106]

TRIO Trioflox/flox; Nestin-Cre ↓ Rac1, RhoG and RhoA
Short and highly branched processes of cerebellar granule cells Peng et al., 2010 [107]↓ axon length and irregular growth cone of cerebellar granule cells

Rac1 Rac1flox/flox; Foxg1-CRE ↓ Rac1

↑ number of primary neurites and secondary branches in
hippocampal neurons

Chen et al., 2007 [108]Absence of the anterior commissure
Corpus callosal axons fail to cross the midline
Defasciculation of thalamocortical and corticothalamic axons and
projection defects

LIMK LIMK-1 KO ↓ Rac1, cdc42 and RhoA ↓ size of the growth cone of hippocampal neurons Meng et al., 2002 [109]

Spine Density and Spine Morphology

Oligophrenin1 Ophn1−/y ↑ RhoA

↓ density of mushroom-shaped spines on apical dendrites of
CA1 pyramidal neurons of the hippocampus Khelfaoui et al., 2007 [94]

Powell et al., 2012 [101]↓ length of spines on basal dendrites of CA1 pyramidal neurons of
the hippocampus
↓ density of mushroom-shaped spines of dentate gyrus
granule neurons

α-PIX (ArhGEF6) α-Pix KO ↓ Rac1 and cdc42 ↑ spine density in the hippocampus Ramakers et al., 2012 [106]

Rac1 Rac1flox/flox; CamKII-CRE
Rac1flox/flox; Syn1-Cre

↓ Rac1
↓ spine density in the hippocampus Bongmba et al., 2011 [110]

Pennucci et al., 2016 [111]↓ PV-positive GABAergic presynaptic terminals in
hippocampal pyramidal layer

PAK3 dnPAK ↓ Rac1 and cdc42 ↓ spine density of pyramidal cortical neurons Hayashi et al., 2004 [112]

LIMK LIMK-1 KO ↓ Rac1, cdc42 and RhoA Altered spine shape Meng et al., 2002 [109]

Synaptic Transmission and Plasticity

Oligophrenin1 Ophn1−/y ↑ RhoA

Altered neurotransmitter release in the hippocampus
Khelfaoui et al., 2007 [94]
Powell et al., 2012 [101]

↓ evoked EPSC amplitude and spontaneous EPSC frequency of
dentate gyrus granule neurons
↓ evoked IPSC amplitude and spontaneous IPSCs frequency in
hippocampal slices
Impaired vesicle recycling dynamics

α-PIX (ArhGEF6) α-Pix KO ↓ Rac1 and cdc42
↓ synapse density

Ramakers et al., 2012 [106]↓ early-phase LTP and ↑ LTD in CA1 hippocampus
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Table 1. Cont.

Gene Mutated in ID Genetic Mouse Models GTPase Pathway Activity (1) Major Phenotypes (2) References

TRIO Trio KD neurons ↓ Rac1, RhoG and RhoA
↓ EPSC frequency

Ba et al., 2016 [113]↑ AMPAR-mediated synaptic transmission
↓ AMPAR endocytosis rate

ArhGEF9 ArhGEF9 KO ↓ cdc42

↓ postsynaptic gephyrin and GABAA receptor clusters in
the hippocampus Jedlicka et al., 2009 [114]

Papadopoulos et al., 2007 [115]↓mIPSC frequency and amplitude of CA1 pyramidal neurons of
the hippocampus
↑ LTP and ↓ LTD in the hippocampus

Rac1 Rac1flox/flox; Syn1-Cre ↓ Rac1
↓ frequency and amplitude of the sIPSCs of hippocampal
pyramidal neurons Pennucci et al., 2016 [111]
Impaired synchronization of cortical networks and abnormal
brain activity

PAK3 dnPAK ↓ Rac1 and cdc42
Altered presynaptic structure in the cortex

Hayashi et al., 2004 [112]↑ AMPAR- and NMDAR-mediated synaptic transmission in the
cortex
↑ LTP and ↓ LTD in the cortex

LIMK LIMK-1 KO ↓ Rac1, cdc42 and RhoA
↑ LTP in the hippocampus Meng et al., 2002 [109]
Faster synaptic depression and ↑ frequency of mEPSCs in the
hippocampus

(1) RhoA/Rac1/cdc42 GTPase pathway activity as a consequence of the mutation of gene related to ID. ↑ and ↓ indicate an increased and a decreased signaling pathway, respectively.
(2) Abbreviations: AMPAR, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor; EPSC, excitatory postsynaptic currents; IPSC, inhibitory postsynaptic currents; LTD, long-term
depression; LTP, long-term potentiation; mEPSC, miniature excitatory postsynaptic currents; mIPSC, miniature inhibitory postsynaptic currents; NMDAR, N-methyl-D-aspartate receptor;
PV, parvalbumin.
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By exome sequencing of 2104 ID parent/children trios, two non-synonymous RAC1 mutations were
identified which generate dominant-negative (DN) alleles and are expected to result in a condition
of haploinsufficiency and hypoactivity of RAC1 [77,78]. Children carrying these mutations also
show microcephaly, thus these mutations affect neuronal proliferation. A subsequent study based
on whole-exome sequencing (WES) has demonstrated that, depending on where the mutation of RAC1
occurs, the additional phenotypes observed were: Microcephaly for c53.G > A (pCys18Tyr), c116A > G
(pAsn39Ser), c218C > T (p.Pro73Leu) and c470G > A (p.Cys157Tyr) variants, macrocephaly for c151G > A
(p.Val51Met) and c151G > C (p.Val51Leu) alleles and normal size for c.190T > G (p.Tyr64Asp) allele [78].

In vitro, the functions of the Rac1 have been studied mostly by expressing DN or constitutively
active (CA) mutants, and indicate a critical role of Rac1 in neuritogenesis and neuronal migration [23].
The expression of DN Rac1 in cultured cortical neurons markedly reduces the number of primary
and basal dendrites in neurons with pyramidal morphologies, indicating that Rac is required for the
elaboration of dendritic processes [116]. Conversely, the expression of CA Rac leads to the elaboration
of dendritic processes [116]. Moreover the expression of DN Rac1 results in a progressive elimination of
dendritic spines, whereas hyperactivation of RhoA causes a drastic simplification of dendritic branch
patterns that is dependent on the activity of the RhoA target ROCK [117]. Overall, the results obtained
with these in vitro approaches are compromised by the artificial conditions of overexpressed mutant
protein and the abundant crosstalk between members of the Rho GTPases family.

In vivo, the full KO of Rac1 in mice leads to embryonic lethality [118], therefore models of
conditional deletion of Rac1 in the CNS have been generated, including:

Rac1flox/flox; Foxg1-Cre, leading to an early deletion of Rac1 in the ventricular zone of the forebrain [108];
Rac1flox/flox; Syn1-Cre, named Rac1N, leading to a later deletion of Rac1 in differentiating neurons [111];
Rac1flox/flox; CamKII-Cre, leading to a brain specific deletion of Rac1 in the hippocampus [110];
Rac1flox/flox; Nkx2.1Tg-Cre, leading an early deletion of Rac1 in the medial ganglionic eminence
(MGE) [119].

The deletion of Rac1 in ventricular zone (VZ) progenitors does not prevent the axonal outgrowth
of telencephalic neurons [108]. However, the anterior commissure is absent, and the corpus callosum
as well as hippocampal commissural axons fail to cross the midline in Rac1flox/flox; Foxg1-Cre KO
embryos. The thalamocortical and corticothalamic axons also show defasciculation or projection
defects [108]. In contrast to previous studies using DN mutants, these results suggest that Rac1
controls axon guidance rather than neuritogenesis. The specific deletion of Rac1 in the hippocampus
induces a reduced spine density [110].

In the hippocampal pyramidal layer of Rac1N mice, Pennucci and colleagues have observed
a significant decrease of PV-positive GABAergic presynaptic terminals [111]. They observe no
differences in membrane capacitance, input resistance, and membrane resting potential, all of which
are passive properties of pyramidal neurons [111]. Instead, hippocampal pyramidal neurons show
reduced frequency and amplitude of the sIPSCs [111].

Rac1N mice show generalized hyperactivity and impaired hippocampal-dependent spatial,
working and learning and memories [111]. Moreover, quantitative electroencephalography (EEG)
analysis revealed impaired synchronization of cortical networks and abnormal brain activity,
with slower θ–α rhythms significantly evident in these mice [111].

3.3. Rac1 and GABAergic Neurons

Inhibitory GABAergic interneurons play fundamental roles in modulating cortical and
hippocampal neuronal circuits [120,121]. The altered neurogenesis and/or migration of these neurons
may alter the balance between excitatory and inhibitory activities that is required for proper brain
function, a dysfunction thought to be at the basis of various neurological and cognitive conditions
including ID, ASD, epilepsy and schizophrenia [122].
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Several extracellular cues drive the migration and differentiation of the cortical and hippocampal
GABAergic cells, while little is known about the intracellular mechanisms that underlie their motility
responses [123]. Some recent studies have established that Rac proteins are essentially required for the
development of cortical and hippocampal GABAergic interneurons. Rac1 is required for the exit from
the cell cycle of the MGE-born interneuron precursors [119] and to confer migratory competence to the
differentiating progenitors [108].

Foxg1-Cre-mediated Rac1 deletion severely disrupts the tangential migration of both LGE- and
MGE-derived interneurons [108]. Also the Syn-Cre mediated deletion of Rac1 results in defective
interneuron migration and differentiation. Interestingly, the hyperactivation of Rac1/Rac3 also affects
migration, maturation and synaptogenesis of hippocampal interneurons, in similar ways [21].

Recent works have shown that Rac1 and Rac3 contribute synergistically to the development
of cortical and hippocampal GABAergic interneurons [26,48]. These studies have also pointed
to a possible role of Rac1 and Rac3 proteins in the later development of specific populations of
MGE-derived interneurons [48] and have highlighted cytoskeletal defects in cultured MGE-derived
neurons from Rac1/Rac3 double KO mice that may justify the observed migratory defects [26].

The above observations raise interesting points: The increasing role of inhibitory neurons in
neurological and cognitive disorders, and the fact that we know very little about the inhibitory neurons
(their subtypes, their connectivity) and in particular their synapses (organization, strength, plasticity).
The focus on dendritic spines, i.e., excitatory synapses, justified by the experimental accessibility, leaves
several questions unanswered, such as the role of inhibition and the plasticity of non-spiny synapses.

3.4. Mutations of PAK3

The p21-activated kinases (PAKs) are a Rac/cdc42-dependent family of Ser/Thr protein kinases.
However, PAKs can also act upstream of Rac1 by interacting with the Rac-GEF called PAK-interacting
exchange factor (PIX) [124].

In ID patients a missense mutation of PAK3 gene, located on chromosome Xq23, was found to
result in a premature termination of translation, representing a loss-of-function mutation [125,126].
Since these original observations, additional PAK3 mutations have been detected in both syndromic
and non-syndromic ID [127–131], all of which appear to be loss-of-function [132].

Pak3 is expressed in the developing and adult brain, including the cortex and
hippocampus [125,133,134]. In cultured neurons, active Pak3 is distributed throughout the cell
soma and the dendritic shafts [112,133]. In vitro, PAK3 mutations affect actin dynamics at dendritic
spines [132] resulting in a decreased density of spines and synapses [135].

Two mouse models have been generated. The first is a DN-Pak transgenic mice, consisting in the
Pak autoinhibitory domain, which binds to the catalytic domain of group I Paks (Pak1, Pak2 and Pak3)
to block their autophosphorylation and consequently the activation of their catalytic activity [112].
The second is the Pak3 KO [125]. Cortical neurons in these mice display fewer dendritic spines and
an increased proportion of larger synapses. Altered synaptic morphology are correlated with enhanced
LTP and reduced LTD in the cortex [112]. Notably, Pak3-deficient mice exhibit specific impairments in
the consolidation/retention phase of hippocampus-dependent memories [112,133].

3.5. Mutations of αPIX

The PAK-interacting exchange factor (αPIX) gene, also known as ARHGEF6 or Cool2, is located on
chromosome Xq26.3, codes for a GEF active on Rac1, and can induce membrane ruffling [106,136,137].
In X-linked ID patients the αPIX identified mutation is in the first intron and results in preferential
skipping of exon 2 predicting a protein lacking 28 amino acids [138].

Murine αPix is highly expressed in the hippocampus, in the cortex and in the cerebellum, both in
neuronal cell bodies and in dendrites [106]. In cultures neurons αPix colocalizes with PSD-95 at the
PSD of excitatory synapses [136]. The knockdown of αPix results in spine morphology alterations,
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characterized by a decrease of large mushroom-type spines and an increase of elongated spines and
filopodia-like protrusions [136,137].

In contrast, the absence of αPix in vivo leads to a significant increase in the dendritic length and in
the number of dendritic spines along apical dendrites on one side and induces a reduction in excitatory
contact density in adult mice on the other side, suggesting that there are more spines that do not
participate in the formation of synapses in the hippocampi of αPix KO mice [106].

Similar discrepancies between in vivo and in vitro phenotypes have also been noted for Ophn1
and PAK3 [94,99,133,135]. It has been proposed that the cellular environment may account for the
distinct phenotypic effects as the environment of neurons and spines is much more complex in vivo
compared with dissociated and slice cultures.

Behavioral characterization of αPix KO mice revealed largely intact performance in basic tests of
spatial reference and working memory. However, these mice exhibit deficits in more complex spatial
learning and flexibility, and reduced behavioral control under moderate stress, thus mimicking the
human ID phenotype [106].

3.6. Mutations of ARHGEF9

The ARHGEF9 gene, located on chromosome Xq11.1, codes for collybistin, is a neuronal GDP-GTP
exchange factor that specifically activates cdc42 and not Rac or RhoA [139]. The first mutation
described is a breakpoint between exons 6 and 7 of ARHGEF9 resulting in the absence of full-length
transcripts in patients with ID [140]. Subsequently, Lemke et al. [141] reported a missense mutation in
the RhoGEF domain of ARHGEF9 associated with ID. Using X-chromosome exome sequencing, a novel
mutation in ARHGEF9 was reported in a family with X-linked ID with variable macrocephaly and
macro-orchidism [142]. One year later mutations or structural genomic alterations affecting ARHGEF9
were reported in patients with ID [143].

The mechanism by which mutations of ARHGEF9 lead to neurodevelopmental disorder is
beginning to be clarified; as CB is involved in the formation of inhibitory GABAergic synapses,
the loss-of-function mutations of ARHGEF9 lead to neuronal hyperexcitability. Furthermore, the loss
of CB function is associated with reduced inhibition of mTOR [144].

During brain development, alternative ArhGEF9 mRNA splicing generates CB1 and CB2 isoforms
in varying ratios. CB1 level is enhanced during early brain developmental, while CB2 levels remain
constant throughout brain development [145].

In primary neurons, CB1 and CB2 differentially promote the formation of gephyrin clusters
(hence, GABAergic synapses) depending on the degree of maturity of dendritic segments [145].
During hippocampal adult neurogenesis CB1 regulates neuronal migration, while CB2 is essential for
dendrite outgrowth, in fact CB2 overexpression results in a significant reduction in complexity of the
dendritic tree and reduced total and terminal dendritic length [145].

ArhGEF9 KO mice show normal locomotor performance but reduced exploratory behavior and
enhanced anxiety and impaired spatial learning [115]. These behavioral findings are associated with
a region-specific loss of postsynaptic gephyrin and GABAA receptor clusters in the hippocampus and
the basolateral amygdala [114,115]. The changes in hippocampal synaptic plasticity are accompanied
by increased LTP due to reduced dendritic GABAergic transmission onto CA1 pyramidal neurons [115].

3.7. Mutations of FGD1

The gene FGD1 (FYVE, RhoGEF and PH domain-containing protein 1), located on chromosome
Xp11.22, codes for a protein which binds specifically to the GTPase cdc42 via its PH and DH domains,
and stimulates the GDP-GTP exchange of its isoprenylated form [146]. FGD1 is involved in the
transmission of signals that regulate the development of axons and dendrites [147]. Mutations in FGD1
have been associated with a form of syndromic X-linked ID known as the Aarskog syndrome [148]
(see below) and with non-specific nonsyndromic X-linked ID [147].
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Many missense mutations in FGD1 in either the structurally conserved region (SCR) or the
pleckstrin homology domain (PHD) have been detected in syndromic X-linked ID [149]. Importantly,
a base change in exon 4, which results in proline 312 to be substituted with a leucine, is predicted
to eliminate a β-turn, creating a long stretch of coiled sequence which may affect the orientations of
a SH-3 binding domain and the first structural conserved region [149]. The position of the β-turn is
thought to be required for the correct positioning of an AH3 domain 5′ to the relative SCR region 3′.
In such way the sequence defined by exon 4 serves as a linker between the FGD1 domain. Although not
experimentally verified, such mutations are expected to compromise FGD1 activity.

The microinjection of FGD1 into 3T3 fibroblasts induced actin polymerization and assembly of
clustered integrin complexes [150]. Thus FGD1 is involved in the regulation of cdc42 activity at the
subcortical actin cytoskeleton and Golgi complex [151].

3.8. Mutations of TRIO

The gene TRIO, located on chromosome 5p15.2, codes for a large protein of 3097 amino acids,
member of the mammalian Dbl family. TRIO comprises two Dbl-homology-Pleckstrin-homology
(DH-PH) GEF domains with distinct specificity and a C-terminal serine kinase domains [152].
The first DH-PH domain has been shown to activate Rac1 and RhoG, whereas the second activates
RhoA [153,154]. Trio can be alternatively spliced and, as a result, encodes several isoforms whose
expression is nervous system specific [155,156].

An intragenic de novo 235 kb deletion of TRIO was detected in a boy with ID [113]. Next, targeted
sequencing of this gene in over 2300 individuals with ID, identified three additional loss-of-function
truncating mutations. The probands featured mild to borderline ID combined with autistic, hyperactive
and/or aggressive behavior [113].

Subsequently, a heterozygous frameshift deletion and a de novo missense mutation have been
reported in patients with ID associated with microcephaly [157]. The frameshift mutation results in
a truncated Trio protein that is expected to be degraded by nonsense-mediated decay, thus resulting in
the production of a negligible protein product. The truncated TRIO lacks the PH1 domain necessary
for efficient GDP/GTP exchange [157].

Trio is highly expressed in the developing and adult brain, including the cerebellum, cortex,
hippocampus and thalamus [107,158]. In the rat brain, Trio is expressed during the early postnatal
period, but rapidly decreases later on [113]. At the cellular level, ID-associated mutations in TRIO
affect dendritic branching and synapse function. Interestingly, upon suppression of endogenous TRIO
both synaptic strength and dendritic formation were enhanced [113].

In the mouse, the total KO of Trio leads to embryonic lethality [159]. Neural-specific deletion
of Trio leads to reduced extension of granule cell neurites and highly branched processes with
perturbed stabilization of actin and microtubules; however Nestin-Trio KO mice died before reaching
adulthood [107]. In order to address Trio gene function in adult mice, Emx1-Trio−/− mice have
been generated; in this case Trio deletion is restricted to the cerebral cortex and hippocampus [158].
These mice show impaired hippocampal-dependent spatial learning ability, while there is no evidence
that the memory is affected [158].

3.9. Rho-GTPases and Other Neurological/Cognitive Conditions

RAC mutations have been detected in children with neurodevelopmental disorders comprising
ID [77,78]. Depending on where the mutation on RAC1 occurs, the ID phenotype was accompanied by
microcephaly, macrocephaly or cerebellar abnormalities.

The βPIX gene, also known as ARHGEF7, located on chromosome 13q34, is ubiquitously expressed
in the mouse brain and codes for a cytoplasmic Rac1 GEF protein. By forming a complex with Rac1,
βPIX recruits Rac1 to membrane ruffles and to focal adhesions (see Online Mendelian Inheritance
in Man (OMIM) *605477). A 1.3 Mb deletion at 13q34, containing ARHGEF, was detected by Array
Comparative Genomic Hybridization (CGH) in the genome of children with ID [160].
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Autism spectrum disorders (ASD) is a group of conditions with a wide range of symptoms
and various severity of ID. ASD have been associated with hypoactive RAC1 function [87,161,162],
but also with mutations in the scaffolding molecule genes SHANK2 and SHANK3; the latter is
known to modulate the activity of Rac1 and cdc42 via the GEF protein βPIX [60]. In a separate
set of ASD patients de novo mutations in TRIO have been reported [163]; these mutants tested
in rodent neurons turned out to be either the hypo- or hyper-functional variant, and to result in
dysregulated glutamatergic synapses. These observations underline how both and excessive or
reduced TRIO activity may cause synaptic dysfunction in ASD-related pathogenesis, and point to the
TRIO-Rac1 pathway at glutamatergic synapses as a possible key point of convergence of a number
of ASD-related genes. In general, these findings support a role of Rho-class GTPases, and RAC1 in
particular, in some of the neuropathological events associated with ASD.

Hypoactive Rac has been demonstrated in animal models of depression [164]. Transcriptional
profiling of the nucleus accumbens (NAc) for Rho GTPase-related genes, revealed a sustained reduction
in Rac1 expression after chronic social defeat stress. This was associated with a repressive chromatin
state surrounding the Rac1 promoter. Inhibition of class 1 histone deacetylases (HDACs) rescued both
the stress-induced Rac1 downregulation and the depression-related behaviors.

In a mouse model of Fragile X syndrome (FXS) the Rac1 GTPase pathway was shown to be
hyperactive, causing a reduced activity of the actin-depolymerization and severing factor ADF/cofilin
which in turn caused spine abnormalities [110,165]. Inhibition of the Rac1 effector PAK1 with
a small-molecule inhibitor rescued ADF/cofilin signaling and synaptic signaling in FXS mice [165].

Rho-GTPases have been implicated in Alzheimer’s Disease (AD) [166]. Researchers have analyzed
the behavioral modifications in AD mouse models, after modifying Rho-GTPase modulations. It was
found that Rac1 activity is increased in AD, while its GTPase-activating protein (GAP) α1-chimaerin,
which acts as Rac1 inactivator, is reduced [167]. Rac1 may (con)cause neuropathogenesis of AD, since is
regulates the transcription of the APP gene (Amyloid β-A4 Precursor Protein, 21q21.3, GRCh38).
Notably, in primary hippocampal neurons the Rac1-specific inhibitor NSC23766 was able to decrease
both Rac1 activity and APP protein levels in a concentration-dependent manner [168].

Genome analyses on families affected by Aarskog syndrome have revealed a mutation in
FGD1 (R402W at position 1204 (1204C > T) in 20% of the cases [169]. The Aarskog syndrome
affects males and is characterized by short stature, craniofacial dysmorphisms, brachydactyly and
urogenital abnormalities. The IQ shows a great variability, from normal to severely disabled,
and no specific behavioral phenotype has been described so far, even though attention deficit and
hyperactivity were observed. Studies performed by Reference [170] reported nine novel mutations
(three missense mutations (p.R402Q; p.S558W; p.K748E), four truncating mutations (p.Y530X; p.R656X;
c.806delC; c.1620delC), one in-frame deletion (c.2020_2022delGAG) and the first reported splice
site mutation (c.1935 + 3A > C)) of FGD1, above the 20 distinct abnormalities reported until today.
No phenotype-genotype correlations between type and position of mutations and clinical features
were noted.

ARHGAP15 codes for a brain-specific and Rac1-specific GAP, that is able to reduce the GTP-bound
level of intracellular Rac1 in the brain. Loss of ARHGAP15 has been documented in a rare variant of
the Mowat-Wilson disease, which is characterized by severe neurological and cognitive deficits, autism
and speech impairments [171,172]. The loss of ArhGAP15 accompanies the loss of the recognized
disease gene Zeb2 [173], nonetheless ARHGAP15 might contribute to the severity of these conditions
or, alternatively, could act as a modifier gene. In mice loss of ArhGAP15 results in increased Rac1/Rac3
activity, reduced spine density, reduced axonal and dendritic complexity and cognitive deficits [21,25].

The ARHGAP18 gene, expressed in the developing and adult CNS, controls cell shape and
spreading, as well as neuronal motility [174] and has been linked to schizophrenia [175,176].
A genome wide screening strategy was applied along with neuroimaging measures and sixty-one
single nucleotide polymorphisms (SNPs) variation was identified in this gene and associated to the
phenotypic variation [175].
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The gene SYNGAP1 (Synaptic RAS-GTPase activating protein1) located on chromosome 6p.21.32
codes a brain-specific Ras GTPase activating protein localized on dendritic spines in neocortical
pyramidal neurons. De novo truncating mutations (K138X, R579X, and L813RfsX22) were detected in
children with autosomal dominant nonsyndromic ID [177]. The mutations eliminate the domain for
synaptic plasticity and spine morphogenesis and result in the usage of a premature stop codon that
destabilizes the SYNGAP1 mRNA and activates nonsense-mediated decay.

Finally, altered Rac1 signaling has also been implicated in the Rett syndrome, and it may contribute
to cyclin-dependent kinase-like5 (CDKL5)-related disorders [178].

3.10. Other Mouse Models to Further Explore the ID Cellular Phenotype

LIMKs are a downstream target for RhoA, Rac1 and cdc42, widely expressed in the mammalian
CNS [179–181]. While LIMK-2 is expressed in all cell types, LIMK-1 is restricted to neuronal tissues
and is enriched in mature synapses and in presynaptic terminal of adult neuromuscular junctions
and in the spinal cord [182–185]. The deletion of LIMK-1 in mice lead to a reduction in the level of
ADF/cofilin phosphorylation and an increase in its actin depolymerizing activity [109]. These mice
exhibit significant abnormalities in both spines and growth cones morphology, in synaptic structure
and function, including enhanced hippocampal LTP [109]. LIMK-1−/− mice show altered behavioral
responses, including impaired fear conditioning and spatial learning, as indicated by a greater increase
in the latency to locate a new platform position during the learning reversal phase [109].

ArhGEF2 (also known as Lfc and GEF-H1) is a Rho GEF protein, and its loss of function
is associated to a neurodevelopmental disorder characterized by ID, mild microcephaly and
midbrain-hindbrain malformation [51]. In the mouse, ArhGEF2 is highly expressed in cortical
and hippocampus neurons, and regulates neurogenesis from cortical precursor cells [186,187].
Cultured hippocampal neurons overexpressing ArhGEF2 exhibit a greatly reduced dendritic tree
with fewer arborizations, decreased spine length and spine area, but increased spine density [187].
The role of ArhGEF2 in vivo has not been reported.

ArhGAP12 is a RhoGAP that negatively regulates Rac1 signaling [188]. ArhGAP12 is expressed in
the hippocampal CA1 region and to a lesser extent in the dentrate gyrus, the protein is detected in
the postsynaptic compartment of excitatory synapses of hippocampal CA1 pyramidal neurons [188].
The overexpression of ArhGAP12 in organotypic hippocampal slices caused a decrease in both spine
density and volume, and an increase in immature spines [188], while its silencing resulted in a reduced
density of immature spines [188]. At the synaptic level, ArhGAP12 overexpression significantly
depresses AMPAR- and NMDAR-mediated synaptic transmission, while its downregulation resulted
in potentiation of AMPAR-mediated but not NMDAR-mediated transmission [188]. In CA1 pyramidal
neurons silencing of ArhGAP12 largely increases both frequency and amplitude of mEPSCs, but had
no effect in evoked IPSCs [188]. No differences are observed in presynaptic release [188]. The role of
ArhGAP12 in vivo has not been reported.

3.11. Specificity of the Rho vs. Rac vs. cdc42 Pathways

Table 2 summarizes the current knowledge on the specificity of the GAPs and GEFs implicated
in ID with respect to RhoA, Rac and cdc42. The GAP activity of OPHN1 appears not to be fully
specific for RhoA, but to extend to Rac and cdc42 [90]. OPHN1 appears to be mainly active
to downmodulate the RhoA/Rho-kinase signaling pathway, repressing its inhibitory activity on
endocytosis and actin-myosin contractility [100]. In fact, the inhibition of RhoA and/or ROCK in
Ophn-mutant mice partially corrects their deficits, thus large part of the ID phenotypes appear to be
linked to the hyperactivation of the RhoA/ROCK pathway. The TRIO protein appears to be a GEF for
both RhoA, RhoG and Rac1 [153,154], thus its mutations is expected to affect both pathways.

In summary, mutational studies have led to the identification of a number of genes coding for
small GTPases of the Rho-class (RAC1) or their regulatory proteins (GAPs and GEFs), or their target
proteins (PAK, LIMK), whose mutation leads to, or are closely linked to, ID. The currently available
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knowledge converges to indicate a causative role of hyperactive RhoA pathway and, conversely,
hypoactive Rac1 and cdc42 pathways, for the onset of the ID condition.

Mutations directly affecting the small GTPase pathway still account only for a fraction of the total
cases of ID, for which the cause remains unknown. Perhaps combinations of disease-associated alleles,
each representing only a minor risk factor, will explain some of the remaining (majority) of cases.
Whether small GTPases are indirectly involved (i.e., functionally hypoactive for other reasons) in ID in
the absence of mutations in known ID genes, is currently unclear.

Altered activity of the Rac1 GTPase is likely to be a common denominator for several
neurodevelomental conditions which include an ID component, regardless of whether the genetic
cause(s) has been identified. This is not surprising, since these disorders are characterized by altered
synaptic plasticity and aberrant spine morphology and density, processes that are regulated by small
Rho-GTPases (e.g., [189]). The possibility to finely and specifically remodulate Rac1 activity could
have a much wider clinical perspective then those forms of ID caused by Rac1-pathway mutations.
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Table 2. GTPase specificity of genes involved in human ID.

Gene Mutated in ID Location Mutation Functional Effect (1) GTPase Specificity Function References

Oligophrenin1 (OPHN1) Xq12 (X; 12) (q11; q15) translocation
1-bp deletion LoF Mainly RhoA

Repression of Rho-kinase pathway
Control of endocytosis
Control of actin-myosin contractility

Barresi et al. 2014 [100]

p21 Protein Activated Kinase (PAK3) Xq23 Missense (R67C) LoF Rac1 and cdc42
Dendrite development
Dendritic spine maturation and
synaptic plasticity

Ncbi gene ID 5063
RefSeq 2018
Allen et al., 1998 [125]
Bienvenu et al., 2000 [126]

RHO Guanine Nucleotide Exchange
Factor 6 (ARHGEF6, αPIX) Xq26.3 IVS1-11T→C Exon 2 skipping (LoF) Rac1 and cdc42 Induction of membrane ruffling

OMIM #300267
Ramarkers et al., 2012 [106]
Kutsche et al., 2000 [138]

RHO Guanine Nucleotide Exchange
Factor 9 (ARHGEF9) Xq11.1

Breakpoint betwee nexon 6 and 7
p.R290H missense mutation
c1012C > T; p.R338W

Absence of full-lenght
transcripts (LoF) cdc42 Recruitment of gephryn and receptors in

GABAergic and glycinergic synapses

Ncbi gene ID 23229
Kalscheuer et al. 2009 [140]
Lemke et al., 2012 [141]

FYVE, RhoGEF and PH
Domain-Containing Protein 1 (FGD1) Xp11.22 C934T exon 4 Elimination of

a β-turn (LoF) cdc42 Axon and dendrite outgrowth
and complexity

Zheng et al. 1996 [146]
Martinez-Castellano 2006 [147]
Lebel et al., 2002 [149]

Triple Functional Domain (TRIO) 5p15.2

De novo 235 kb deletion
p.Arg217*, p.Asp1231Valfs*11
p.Trp1376*
Frameshift deletion
(pGln1489Argfs*11)
De novo missense mutation
(p.Arg1428Gln, p.Pro1461Thr,
p.Asn1080Ile)

LoF Rac1, RhoG, RhoA
Axon guidance
Neurite outgrowth
Cerebellum development

Blangy et al. 2000 [154]
Jaiswal et al. 2013 [153]
Pengelly et al. 2016 [157]
Ba et al., 2016 [113]

Rho Guanine Nucleotide Exchange
Factor 7 (ARHGEF7, β-PIX) 13q34 1.3 Mb deletion at 13q34 LoF Rac1

Increase of synaptic Rac activity
Increase of dendrite protrusions
Induction of membrai nruffling

Ncbi gene ID 8874
Orsini et al., 2018 [160]

Ras-Related C3 Botulinum Toxin
Substrate 1 (RAC1) 7p22.1 c53.G > A (pCys18Tyr)

c116A > G (pAsn39Ser) DN
Modulation of the cytoskeleton
Control on cell growth
Control on cell-cycle

OMIM #602048
Lelieveld et al., 2017 [77]
Rejinders et al., 2017 [78]

(1) Abbreviations: LoF, Loss of Function; DN, Dominant Negative.
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4. Cognitive Deficits Due to Developmental Miswiring Can Be Reverted

For a long time, the prevailing view has been that ID and neurodevelopmental disorders in
general cannot be cured because the defective cellular processes are difficult to target and to be rescued.
Such is perhaps the case of altered neurogenesis and long-distance connections. Much of the treatment
has therefore focused on environmental optimization, including individualized education plans, as
well as minimizing complicating co-morbidities (such as, visual, sleep or pain co-morbidities) [190].
For specific syndromes associated with ID, therapeutic strategies are known [190]. For instance,
for some metabolic disorders, such as Pompe disease, enzyme replacement therapy is used, which can
drastically change prognosis and is sometimes accompanied by intellectual sparing.

It is becoming increasingly clear, on the contrary, that errors in local circuitry, neuronal networking
and synaptic physiology/plasticity can be partially reverted to a more normal architecture and
functioning, accompanied by improvements in cognitive performances, upon correction of the
underlying molecular or biochemical defect. This is due to the surprisingly high intrinsic plasticity of
short-range projections and synaptic number, position and strength. Although reduced compared to
the embryonic and newborn brain, adult local neural circuits are still able to undergo some extent of
reorganization and to balance excitatory vs inhibitory activity. Following some notable examples:

4.1. Gene Therapy of Rett Syndrome

Rett syndrome is a severe progressive condition comprising ID, due to mutations in the
X-linked MECP2 gene. Mecp2Bnull/− female mice are a widely used model of Rett syndrome [191].
A normal copy of the Mecp2 cDNA was placed under control of a fragment of its own promoter
into scAAV9 vector and tail-vein injected into young adult MeCP2 null mice. Widespread delivery
of MeCP2 was observed, the exogenous MeCP2 protein was found to be functional and able
to bind to heterochromatin. Delivery of exogenous MeCP2 restored normal neuronal size and
morphology. Strikingly, by 12 weeks and up to 24 weeks, several Rett-associated parameters (including
mobility, gait, hindlimb clasping, tremor and general condition) stabilized at an improved level in
the scAAV9/MeCP2–injected MeCP2Bnull/− females, whereas control injected females progressed.
MeCP2–injected Mecp2Bnull/− mice performed significantly better than controls in the rotarod, inverted
grid, and platform tests as well as nesting ability [192]. Thus, gene replacement strategies are effective
in reversing the neurological deficits of Rett syndrome.

4.2. Channel Therapy for Down Syndrome

The Ts65Dn mice represent the best characterized and mostly used animal model of Down
syndrome [193,194]. They recapitulate key hippocampal cognitive deficits of the human syndrome,
such as impaired synaptic plasticity, long term potentiation (LTP), learning and memory deficits,
and increased generation of forebrain GABAergic interneurons. The latter is believed to lead to
imbalanced excitatory/inhibitory transmission in favor of inhibition [195,196], which affects synaptic
plasticity and cognition [197,198].

GABAAR signaling was found to be excitatory rather than inhibitory in Ts65Dn mice.
This excitatory activity was accompanied by (i) a shift in the reversal potential for GABAAR-driven Cl−

currents (ECl) toward more positive potentials and (ii) increased hippocampal expression of the cation
Cl− cotransporter NKCC1 in both Ts65Dn mice and individuals with Down syndrome. The treatment
of adult Ts65Dn mice with the FDA-approved NKCC1 inhibitor bumetanide restored ECl to potentials
seen in normal mice and rescued both synaptic plasticity and hippocampus-dependent memory [199].

The above observations provide the scientific framework to justify attempts to re-modulate the
Rho-GTPases activity and revert the associated neurological and cognitive conditions. Research is
increasing in this direction, and it is now clear that re-modulation of the Rho-GTPase pathways impacts
on neuronal and synaptic networking also in young adults, both in normal conditions and in pathological
contexts. Research on ID, however, is still lagging behind for a number of reasons: First, with the exception
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of the rare inherited forms, the molecular causes are multiple and variable, possibly polygenic and
possibly due to complex and unclear gene-environment interactions; second, it is often syndromic i.e.,
associated to other neurological disturbances; third, the actual endophenotype associated to nonsyndromic
ID in human is unknown, only inferred from mouse models; fourth, (as consequence of the three previous
ones) we lack suitable cell models, based on human neurons, that reliably recapitulated some of the
endophenotypes of ID in the human cortex.

The administration of bacterial Cytotoxic Necrotizing Factor 1 (CNF1), a known
GTPase-activating molecule, to normal mice elicited an increased neuronal connectivity via dendritic
spine remodeling [33,200]. The same treatment applied to a mouse model of Alzheimer’s Disease
(AD) was able to revert some of the behavioral deficits [201]. However, the activity of CNF1 is poorly
characterized, and does not discriminate between members of the Rho GTPase family.

The administration of fasudil, an inhibitor of the ROCK and PKA kinase pathways, improved
spatial learning and working memory in normal mice and rats [202,203]. Considering that fasudil
is safe and well tolerated, and has also been approved for human treatment [204–206] to target the
CNS [207], it could potentially be used to restore normal cognitive performances in those pathologies
linked to RhoA hypoactivity.

4.3. Remodulation of RhoA in the Ophn KO Mouse

Hyperactive RhoA pathway due to loss of OPHN is the biochemical cause of the complex
neuronal phenotypes leading to a XLID (see above). Y-27632 is an inhibitor of the RhoA-dependent
kinase ROCK. Treatment of hippocampal slices from Ophn-1−/y mutant brains with Y-27632 was able
to reverse the synaptic deficits observed in mutant neurons and, on a slower time scale, also the altered
dendritic structure [98,101]. A notable feature of this treatment is that it had no effect on WT neurons.
The brain penetration of Y-27632 was thought to be too low to achieve therapeutic levels for CNS
diseases [208], instead several studies have shown beneficial effects of Y-27632 treatment in animal
models of neurodegenerative diseases [209–211].

In addition to RhoA/ROCK pathway, in some regions of the Ophn1−/y brain increased activity of
the Protein Kinase A (PKA) pathway was also detected [98,212]. Fasudil is a compound that is able to
inhibit both ROCK and PKA kinases activities. The oral administration of fasudil to adult Ophn1−/y

mice was able to rescue some of their memory deficits [98]. In a more extensive study, the effect
of chronic oral administration of fasudil to adult Ophn-1−/y on behavioral and cognitive activities,
as well as neuronal and synaptic properties, was examined [213]. The treatment was able to counteract
vertical and horizontal hyperactivities, to restore recognition memory, while it had little or no effect on
working and spatial memory deficits. The reduced beneficial effect on memory performance suggests
that not all neurodevelopmental alterations may be compensated for by treatments at the adult stage.
In alternative, it has been proposed that administration of drugs such as antidepressant prior to
fasudil could lead to higher efficacy due to their ability to reactivate the juvenile plasticity in the adult
brain [214,215]. Globally these results highlight the potential of fasudil treatment in synaptopathies
and also the need for multiple therapeutic approaches especially in adult where plasticity is reduced.

Allegra et al. [216] examined the survival, axonogenesis and spinogenesis of hippocampal neurons
of Ophn-1−/y mice upon treatment with fasudil. In Ophn-1−/y mice a deficit in neuronal survival has
been observed in newborn animals, while proliferation of stem/progenitor cells appears normal.
Fasudil treatment was able to increase the number of mature newborn neurons in Ophn-1−/y

mice, thus the inhibition of ROCK/PKA may overcome the deficits caused by Ophn1 mutation
at an early stage of neuronal maturation. The same authors found altered morphological maturation
of newly generated cells with a robust impairment of axonal extension and immature dendritic
spines in Ophn-1−/y mice. In this context, fasudil corrected the dendritic spine deficit 21 days after
injection, but was unable to restore a normal proportion of newborn neurons projecting the CA3 area.
Altogether, the morphological analysis reveals two key processes impacted by Ophn1 deficiency:
Axonal extension and dendritic spine morphogenesis, both of which are critical for proper integration
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of newborn neurons. The fasudil rescue experiments indicate that these two processes proceed via
at least partly independent pathways: Dendritic spine density can be restored by downregulating
abnormally high ROCK/PKA activity in Ophn-1−/y mice, while the same approach is not effective on
aberrant axonogenesis.

4.4. Remodulation RhoA in Mouse Model of Rett Syndrome

Positive remodulation of brain Rho GTPases by CNF1 reshapes the actin cytoskeleton and
enhances neurotransmission and synaptic plasticity in mouse brains. Indeed a single CNF1
Intracerebroventricular injection (icv) inoculation of CNF1 in a mouse model of Rett syndrome
markedly improved the behavioral phenotype of MeCP2-308 mice [217]. CNF1 also dramatically
reversed the evident signs of atrophy in astrocytes of mutant mice and restored wt-like levels of
this cell population [217]. These results indicate that remodulation of Rho-class GTPases by CNF1
may constitute a totally innovative therapeutic approach for RTT and, possibly, for other disorders
associated with ID.

Increasing evidence suggest that mitochondrial dysfunction [218] and deviations from normal Rho
GTPases activation state [219] disrupt cognition and synaptic plasticity and may represent important
factors in the cellular pathogenesis of ID, including the Rett syndrome. De Filippis et al. [88] achieved
a re-activation of Rho GTPases by icv administration of CNF1 to adult Mecp2-308 heterozygous
female mice. They observed a restored mitochondrial ATP production via oxidative phosphorylation,
accompanied by the rescue of deficits in spatial reference memory, synaptic plasticity (LTP) and
Tyr1472 phosphorylation of GluN2B, which was abnormally enhanced in the hippocampus of Rett
model mice [88]. This study provides the first evidence that these brain alterations may be intimately
interconnected, thus providing further support to the therapeutic potential of drugs targeting Rho
GTPases and their downstream effectors.

4.5. Remodulation of Rac1

Rac1 activity is dysregulated in certain neurodevelopmental disorders that present all these
three alterations: ID, atypical synaptic plasticity and aberrant spine morphology (see above).
Thus, to develop novel therapies for rescuing cognitive impairment, a reasonable approach might be
to target Rac1 or its direct regulators.

Modulation of Rac1 activity using chemical inhibitors might be a strategy to reestablish
cognitive function. Drugs that regulate Rac1 activation and function could be used to modulate
actin cytoskeleton and spine dynamics, representing potential candidates to alleviate the ID condition,
whether alone on as part of other disorders associated with spine abnormalities.

Several compounds have been described as Rac1-specific inhibitors [87] including NSC23766,
EHop-016, AZA1 and EHT1864. The initial strategy for the identification of these compounds has
been primarily based in the information on structure-function of Rac1 interacting with its GEFs [220].
These inhibitors have mainly been tested in models of cancer metastatization, in vitro and in vivo,
attempting to inhibit tumor cell migration [87]. Indeed, an elevated level and hyperactivation of Rac1
has been associated with the metastatic potential of tumor cells [221].

Little research has been done on the possibility to inhibit the activity of Rac in the CNS.
NSC23766 acts as Rac1 inhibitor interfering with specific Rac1-GEFs, Trio and Tiam-1, thus blocking
GDP/GTP exchange [222]. Many in vivo and in vitro studies have reported its efficacy in neuronal
cells affecting dendritic spine morphology, thus increasing the number of immature spines [223].
Moreover, Zhang et al. [224] have reported a change in neuronal spine density in the rat hippocampus
treated with NSC23766. Interestingly, the inhibition of Rac1-associated signaling by NSC23766 has
been shown to be involved in extinction of memory [225]. The use of NSC23766 as a therapeutic agent
is discouraged due to its high IC50.

EHT1864 selectively inhibits Rac1 downstream signaling by affecting the displacement of GTP.
In this manner, Rac1 remains in an inactive state, as Rac1-GDP. In vitro experiments demonstrate that
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treatment with EHT1864 reduces NMDAR density in rat cortical cultures [226] and decreases density
of dendritic spines in coltured hippocampal pyramidal neurons [227]. Further in vivo analysis need to
be performed to confirm EHT1864 as a potential therapeutic agent.

The pharmacological regulation of Rac1 in the brain can be effective to restore some of the cellular
phenotype underlying ID. However, the available molecules primarily act on the Rac1-downstream
pathway without any tissue-specificity and it is overtly clear that the cytoskeleton coordinates a wide
number of processes, such as proliferation, morphogenesis and motility, that are finely regulated
in every type of cells. Thus, targeting Rac1in this way, in the entire organism to improve cognitive
functions may reasonably cause relevant side effects.

As illustrated above, ID and disorders such as ASD which frequently include ID, are consistently
characterized by reduced (but not absent) activity of the Rac1 and cdc42 pathways, as opposed
to increased RhoA activity (Tables 1 and 2). This raises the interest to identify positive Rac1 and
cdc42 modulators. A re-activation strategy is feasible in those cases in which a quote of Rac1 or cdc42
enzyme is still present in the diseased neurons. Specifically, (a) in the case of heterozygous RAC1
mutations, the remaining normal quote of endogenous RAC1 can be exploited [78]; (b) in the case of
ARHGEF6 mutations, a normal quote of endogenous RAC1 is still present; (c) mutations in ARHGEF9,
FGD and TRIO, all of which are upstream of Rac1 and cdc42, alter GTPase activity in the presence of
normal Rac1 and cdc42. Only the PAK3 mutations might not to be reverted by Rac1 reactivation.

Interfering with protein:protein interaction (PPI) between GTPase and its GEF is expected to result
in their down-modulation [222] while interfering with PPI between GTPase and its GAP is expected
to result in their up-modulation [21]. A new generation of Rac1 inhibitors is emerging, identified
via structural modelling of the Tiam::Rac1 PPI, which turn out to be effective and selective [228].
In a similar way, PPI between Rac1 and its specific GAPs could be exploited to design peptide or
virtual screen for small molecules [229]. Notably, ArhGAP15 is a brain specific, Rac1-specific GAP
which modulates by 2-folds neuronal Rac1 activity [21,230]. Clearly, the specific activity and function
of each GAP and GEF in brain development is only partly known, and intense research is needed in
this direction.

5. Concluding Remarks

Treatments of ID are currently based on environmental optimization and personalized education
plans, as well as minimizing complicating co-morbidities. Pharmacotherapy is substantially lacking.
Recent evidence suggests that some phenotypes associated with learning disabilities can be reversed,
through either genetic correction or pharmacotherapy. At present, whether these provide a realistic
opportunity for treatment remains to be proven.

Rho GTPases are a good target for pharmacological intervention, and in specific conditions with
genetic mutations causing hyperactive Rho or hypoactive Rac pathways, these would need to be
negatively or positively re-modulated, respectively. To achieve brain-specific, GTPase-specific, modest
and controlled re-modulation, the PPI between GTPases and their GEFs and GAPs regulatory partners
open a promising window of opportunity. However, the role of each of these regulators would need to
be defined, in biochemical, cellular and developmental terms. Importantly, novel druggable targets
might be identified from studies focusing on the extended protein network linked to Rho GTPases
during cell migration and/or neuritogenesis (see [231,232]).

The knowhow needed to identify remodulating compounds based on PPI is here: Structural
information on GTPases, GAPs and GEFs, advanced protein-docking tools, effective techniques
for peptide design and virtual screens. Thus, taking in account the feature of this type of
interaction, PPI-based design of peptides or small molecules seems a most promising strategy,
in order: (1) to be tissue-specific; (2) to be GTPase-specific; (3) to achieve mild and finely tuned
over- and under-activation.

Translation to the human setting will require the generation and validation of cellular models of
ID based on human neurons, that ideally should consent the analysis of both excitatory and inhibitory



Int. J. Mol. Sci. 2018, 19, 1821 23 of 35

neurons, and should recapitulate the ID endophenotype. The use of human iPSC seems to be the
way to go. Having such a model in hand, this will be used to better define the cellular phenotype of
ID in human cells, to identify valuable readouts for a possible correction, and to carry out screening
campaigns towards the identification of lead compounds that alleviate ID.
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Abbreviations

ASD Autism Spectrum Disorder
CA Constitutively active
DN Dominant negative
GAP GTPase Activating Protein
GEF Guanosine Exchange Factor
GTPase Guanosine Tri-phosphate Phosphatase
ID Intellectual Disability
KD Knockdown
KO Knockout
PPI Protein::Protein Interaction
PSD Postsynaptic Density
XLID X-linked Intellectual Disability
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