ijms-logo

Journal Browser

Journal Browser

Special Issue "Plant Health and Food Security"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 27 May 2022 | Viewed by 10993

Special Issue Editor

Prof. Dr. Marcello Iriti
E-Mail Website
Guest Editor
Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20133 Milan, Italy
Interests: essential oils; bioactive phytochemicals; ethnopharmacology; antimicrobial resistance; one health; food security
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The United Nations General Assembly has declared 2020 as the International Year of Plant Health with the aim to raise global awareness on how protecting plant health can help to end hanger, reduce poverty, protect the environment, and boost economic development. Indeed, plants supply up 80% of the food we eat and 98% of the oxygen we breathe. However, the Food and Agriculture Organization estimates that agricultural production must rise by about 60% by 2050 in order to feed a larger population. Therefore, plant health is pivotal to feeding the planet because plant pests are globally responsible for the loss of up to 40% of food crops. Not least, climate change is having a huge impact on plant health, threatening to reduce crop yields and lower the quality of agricultural products. Rising temperatures are also exacerbating water scarcity and altering plant–pest interactions: Indeed, many plant pests are appearing in places where they were never observed before due to climate change. A plethora of biotic and abiotic stresses can threaten plant health, including microbial pathogens and viruses, insects, nematodes, and other invertebrates; parasitic plants and weeds; drought; extreme climatic conditions; anthropogenic environmental pollutants, and non-environmentally-friendly agricultural practices, to cite but a few. All these factors unavoidably alter the plant metabolism (both primary and secondary metabolic pathways) at gene, protein, and metabolite levels in order to improve the plant fitness in this complex scenario.

Therefore, this Special Issue welcomes articles focusing on biochemical and molecular mechanisms involved in the general issue of plant health, including the plant resistance/tolerance/acclimatization to biotic/abiotic stresses, with an emphasis on the impacts of these processes on global food security.

Prof. Dr. Marcello Iriti
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Sustainable agriculture
  • Global climate change
  • Crop protection
  • Agrochemicals
  • Plant stress physiology
  • Abiotic stresses
  • Global food needs
  • Food production
  • Food quality
  • Food safety
  • Mycotoxins and mycotoxicoses
  • Healthy diet

Published Papers (10 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Article
Investigation of the Proteomes of the Truffles Tuber albidum pico, T. aestivum, T. indicum, T. magnatum, and T. melanosporum
Int. J. Mol. Sci. 2021, 22(23), 12999; https://doi.org/10.3390/ijms222312999 - 30 Nov 2021
Viewed by 648
Abstract
Truffles of the Tuber species are known as expensive foods, mainly for their distinct aroma and taste. This high price makes them a profitable target of food fraud, e.g., the misdeclaration of cheaper truffle species as expensive ones. While many studies investigated truffles [...] Read more.
Truffles of the Tuber species are known as expensive foods, mainly for their distinct aroma and taste. This high price makes them a profitable target of food fraud, e.g., the misdeclaration of cheaper truffle species as expensive ones. While many studies investigated truffles on the metabolomic level or the volatile organic compounds extruded by them, research at the proteome level as a phenotype determining basis is limited. In this study, a bottom-up proteomic approach based on LC-MS/MS measurements in data-independent acquisition mode was performed to analyze the truffle species Tuber aestivum, Tuber albidum pico, Tuber indicum, Tuber magnatum, and Tuber melanosporum, and a protein atlas of the investigated species was obtained. The yielded proteomic fingerprints are unique for each of the of the five truffle species and can now be used in case of suspected food fraud. First, a comprehensive spectral library containing 9000 proteins and 50,000 peptides was generated by two-dimensional liquid chromatography coupled to tandem mass spectrometry (2D-LC-MS/MS). Then, samples of the truffle species were analyzed in data-independent acquisition (DIA) proteomics mode yielding 2715 quantified proteins present in all truffle samples. Individual species were clearly distinguishable by principal component analysis (PCA). Quantitative proteome fingerprints were generated from 2066 ANOVA significant proteins, and side-by-side comparisons of truffles were done by T-tests. A further aim of this study was the annotation of functions for the identified proteins. For Tuber magnatum and Tuber melanosporum conclusive links to their superior aroma were found by enrichment of proteins responsible for sulfur-metabolic processes in comparison with other truffles. The obtained data in this study may serve as a reference library for food analysis laboratories in the future to tackle food fraud by misdeclaration of truffles. Further identified proteins with their corresponding abundance values in the different truffle species may serve as potential protein markers in the establishment of targeted analysis methods. Lastly, the obtained data may serve in the future as a basis for deciphering the biochemistry of truffles more deeply as well, when protein databases of the different truffle species will be more complete. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
iTRAQ-Based Proteomics Analysis of Response to Solanum tuberosum Leaves Treated with the Plant Phytotoxin Thaxtomin A
Int. J. Mol. Sci. 2021, 22(21), 12036; https://doi.org/10.3390/ijms222112036 - 07 Nov 2021
Viewed by 592
Abstract
Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were [...] Read more.
Thaxtomin A (TA) is a phytotoxin secreted by Streptomyces scabies that causes common scab in potatoes. However, the mechanism of potato proteomic changes in response to TA is barely known. In this study, the proteomic changes in potato leaves treated with TA were determined using the Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) technique. A total of 693 proteins were considered as differentially expressed proteins (DEPs) following a comparison of leaves treated with TA and sterile water (as a control). Among the identified DEPs, 460 and 233 were upregulated and downregulated, respectively. Based on Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, many DEPs were found to be involved in defense and stress responses. Most DEPs were grouped in carbohydrate metabolism, amino acid metabolism, energy metabolism, and secondary metabolism including oxidation–reduction process, response to stress, plant–pathogen interaction, and plant hormone signal transduction. In this study, we analyzed the changes in proteins to elucidate the mechanism of potato response to TA, and we provided a molecular basis to further study the interaction between plant and TA. These results also offer the option for potato breeding through analysis of the resistant common scab. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Silica Particles Trigger the Exopolysaccharide Production of Harsh Environment Isolates of Growth-Promoting Rhizobacteria and Increase Their Ability to Enhance Wheat Biomass in Drought-Stressed Soils
Int. J. Mol. Sci. 2021, 22(12), 6201; https://doi.org/10.3390/ijms22126201 - 08 Jun 2021
Cited by 2 | Viewed by 906
Abstract
In coming decades, drought is expected to expand globally owing to increased evaporation and reduced rainfall. Understanding, predicting, and controlling crop plants’ rhizosphere has the potential to manipulate its responses to environmental stress. Our plant growth-promoting rhizobacteria (PGPR) are isolated from a natural [...] Read more.
In coming decades, drought is expected to expand globally owing to increased evaporation and reduced rainfall. Understanding, predicting, and controlling crop plants’ rhizosphere has the potential to manipulate its responses to environmental stress. Our plant growth-promoting rhizobacteria (PGPR) are isolated from a natural laboratory, ‘The Evolution Canyon’, Israel, (EC), from the wild progenitors of cereals, where they have been co-habituating with their hosts for long periods of time. The study revealed that commercial TM50 silica particles (SN) triggered the PGPR production of exopolysaccharides (EPS) containing D-glucuronate (D-GA). The increased EPS content increased the PGPR water-holding capacity (WHC) and osmotic pressure of the biofilm matrix, which led to enhanced plant biomass in drought-stressed growth environments. Light- and cryo-electron- microscopic studies showed that, in the presence of silica (SN) particles, bacterial morphology is changed, indicating that SNs are associated with significant reprogramming in bacteria. The findings encourage the development of large-scale methods for isolate formulation with natural silicas that ensure higher WHC and hyperosmolarity under field conditions. Osmotic pressure involvement of holobiont cohabitation is also discussed. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Overexpression of OsCASP1 Improves Calcium Tolerance in Rice
Int. J. Mol. Sci. 2021, 22(11), 6002; https://doi.org/10.3390/ijms22116002 - 01 Jun 2021
Cited by 1 | Viewed by 1367
Abstract
The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. [...] Read more.
The Casparian strip domain protein 1 (OsCASP1) is necessary for the formation of the Casparian strip (CS) in the rice endodermis. It also controls Ca2+ transport to the stele. Here, we demonstrated that OsCASP1 overexpression enhanced Ca tolerance in rice. Under normal conditions, OsCASP1-overexpressed lines showed similar concentrations of essential metals in the roots and shoots compared to the wild type, while under high Ca conditions, Ca in the roots, shoots, and xylem sap of the OsCASP1-overexpressed lines was significantly decreased. This did not apply to other essential metals. Ca-inhibited growth was significantly alleviated in the OsCASP1-overexpressed lines. Furthermore, OsCASP1 overexpression resulted in earlier formation of both the CS and functional apoplastic barrier in the endodermis but did not induce ectopic CS formation in non-endodermal cell layers and affect suberin accumulation in the endodermis. These results indicate that the overexpression of OsCASP1 promotes CS formation in endodermal cells and inhibits Ca2+ transport by the apoplastic pathway, restricting Ca accumulation in the roots and shoots under high Ca conditions. Taken together, the results suggest that OsCASP1 overexpression is an effective way to improve rice adaptation to high Ca environments. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Salinity Stress Alters the Secondary Metabolic Profile of M. sativa, M. arborea and Their Hybrid (Alborea)
Int. J. Mol. Sci. 2021, 22(9), 4882; https://doi.org/10.3390/ijms22094882 - 05 May 2021
Cited by 1 | Viewed by 667
Abstract
Increased soil salinity, and therefore accumulation of ions, is one of the major abiotic stresses of cultivated plants that negatively affect their growth and yield. Among Medicago species, only Medicago truncatula, which is a model plant, has been extensively studied, while research [...] Read more.
Increased soil salinity, and therefore accumulation of ions, is one of the major abiotic stresses of cultivated plants that negatively affect their growth and yield. Among Medicago species, only Medicago truncatula, which is a model plant, has been extensively studied, while research regarding salinity responses of two important forage legumes of Medicago sativa (M. sativa) and Medicago arborea (M. arborea) has been limited. In the present work, differences between M. arborea, M. sativa and their hybrid Alborea were studied regarding growth parameters and metabolomic responses. The entries were subjected to three different treatments: (1) no NaCl application (control plants), (2) continuous application of 100 mM NaCl (acute stress) and (3) gradual application of NaCl at concentrations of 50-75-150 mM by increasing NaCl concentration every 10 days. According to the results, M. arborea maintained steady growth in all three treatments and appeared to be more resistant to salinity. Furthermore, results clearly demonstrated that M. arborea presented a different metabolic profile from that of M. sativa and their hybrid. In general, it was found that under acute and gradual stress, M. sativa overexpressed saponins in the shoots while M. arborea overexpressed saponins in the roots, which is the part of the plant where most of the saponins are produced and overexpressed. Alborea did not perform well, as more metabolites were downregulated than upregulated when subjected to salinity stress. Finally, saponins and hydroxycinnamic acids were key players of increased salinity tolerance. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta
Int. J. Mol. Sci. 2020, 21(24), 9463; https://doi.org/10.3390/ijms21249463 - 12 Dec 2020
Cited by 2 | Viewed by 1096
Abstract
Phytophthora is arguably one of the most damaging genera of plant pathogens. This pathogen is well suited to transmission via the international plant trade, and globalization has been promoting its spread since the 19th century. Early detection is essential for reducing its economic [...] Read more.
Phytophthora is arguably one of the most damaging genera of plant pathogens. This pathogen is well suited to transmission via the international plant trade, and globalization has been promoting its spread since the 19th century. Early detection is essential for reducing its economic and ecological impact. Here, a shotgun proteomics approach was utilized for Phytophthora analysis. The collection of 37 Phytophthora isolates representing 12 different species was screened for species-specific peptide patterns. Next, Phytophthora proteins were detected in planta, employing model plants Solanum tuberosum and Hordeum vulgare. Although the evolutionarily conserved sequences represented more than 10% of the host proteome and limited the pathogen detection, the comparison between qPCR and protein data highlighted more than 300 protein markers, which correlated positively with the amount of P. infestans DNA. Finally, the analysis of P. palmivora response in barley revealed significant alterations in plant metabolism. These changes included enzymes of cell wall metabolism, ROS production, and proteins involved in trafficking. The observed root-specific attenuation in stress–response mechanisms, including the biosynthesis of jasmonates, ethylene and polyamines, and an accumulation of serotonin, provided the first insight into molecular mechanisms behind this particular biotic interaction. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Induction of Glucoraphasatin Biosynthesis Genes by MYB29 in Radish (Raphanus sativus L.) Roots
Int. J. Mol. Sci. 2020, 21(16), 5721; https://doi.org/10.3390/ijms21165721 - 10 Aug 2020
Cited by 5 | Viewed by 1486
Abstract
Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and [...] Read more.
Glucoraphasatin (GRH) is a specific aliphatic glucosinolate (GSL) that is only abundant in radish (Raphanus sativus L.). The gene expression regulating GRH biosynthesis in radish is still poorly understood. We employed a total of 59 radish accessions to analyze GSL profiles and showed that GRH was specific and predominant among the aliphatic GSLs in radish roots. We selected five accessions roots with high, moderate and low GSL biosynthesis, respectively, to conduct a comparative transcriptome analysis and the qRT-PCR of the biosynthesis genes for aliphatic GSLs. In this study, among all the accessions tested, roots with the accession RA157-74 had a high GRH content and showed a significant expression of the aliphatic GSL biosynthesis genes. We defined the genes involved in the GRH biosynthesis process and found that they were regulated by a transcription factor (RSG00789) at the MYB29 locus in radish roots. We found 13 aliphatic GSL biosynthesis genes regulated by the RSG00789 gene in the GRH biosynthesis pathway. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Genome-Wide Identification and Characterization of Drought Stress Responsive microRNAs in Tibetan Wild Barley
Int. J. Mol. Sci. 2020, 21(8), 2795; https://doi.org/10.3390/ijms21082795 - 17 Apr 2020
Cited by 10 | Viewed by 1232
Abstract
Drought stress is a major obstacle to agricultural production. Tibetan wild barley with rich genetic diversity is useful for drought-tolerant improvement of cereals. MicroRNAs (miRNAs) play critical roles in controlling gene expression in response to various environment perturbations in plants. However, the genome-wide [...] Read more.
Drought stress is a major obstacle to agricultural production. Tibetan wild barley with rich genetic diversity is useful for drought-tolerant improvement of cereals. MicroRNAs (miRNAs) play critical roles in controlling gene expression in response to various environment perturbations in plants. However, the genome-wide expression profiles of miRNAs and their targets in response to drought stress are largely unknown in wild barley. In this study, a polyethylene glycol (PEG) induced drought stress hydroponic experiment was performed, and the expression profiles of miRNAs from the roots of two contrasting Tibetan wild barley genotypes XZ5 (drought-tolerant) and XZ54 (drought-sensitive), and one cultivated barley Tadmor (drought-tolerant) generated by high-throughput sequencing were compared. There were 69 conserved miRNAs and 1574 novel miRNAs in the dataset of three genotypes under control and drought conditions. Among them, seven conserved miRNAs and 36 novel miRNAs showed significantly genotype-specific expression patterns in response to drought stress. And 12 miRNAs were further regarded as drought tolerant associated miRNAs in XZ5, which mostly participate in gene expression, metabolism, signaling and transportation, suggesting that they and their target genes play important roles in plant drought tolerance. This is the first comparation study on the miRNA transcriptome in the roots of two Tibetan wild barley genotypes differing in drought tolerance and one drought tolerant cultivar in response to PEG treatment. Further results revealed the candidate drought tolerant miRNAs and target genes in the miRNA regulation mechanism in wild barley under drought stress. Our findings provide valuable understandings for the functional characterization of miRNAs in drought tolerance. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Article
Maize ZmFNSI Homologs Interact with an NLR Protein to Modulate Hypersensitive Response
Int. J. Mol. Sci. 2020, 21(7), 2529; https://doi.org/10.3390/ijms21072529 - 05 Apr 2020
Cited by 7 | Viewed by 1365
Abstract
Nucleotide binding, leucine-rich-repeat (NLR) proteins are the major class of resistance (R) proteins used by plants to defend against pathogen infection. The recognition between NLRs and their cognate pathogen effectors usually triggers a rapid localized cell death, termed the hypersensitive response (HR). Flavone [...] Read more.
Nucleotide binding, leucine-rich-repeat (NLR) proteins are the major class of resistance (R) proteins used by plants to defend against pathogen infection. The recognition between NLRs and their cognate pathogen effectors usually triggers a rapid localized cell death, termed the hypersensitive response (HR). Flavone synthase I (FNSI) is one of the key enzymes in the flavone biosynthesis pathway. It also displays salicylic acid (SA) 5-hydroxylase (S5H) activity. A close homolog of FNSI/S5H displays SA 3-hydroxylase (S3H) activity. Both FNSI/S5H and S3H play important roles in plant innate immunity. However, the underlying molecular mechanisms and the relationship between S5H and S3H with the NLR-mediated HR are not known in any plant species. In this study, we identified three genes encoding ZmFNSI-1, ZmFNSI-2 and ZmS3H that are significantly upregulated in a maize line carrying an autoactive NLR Rp1-D21 mutant. Functional analysis showed that ZmFNSI-1 and ZmFNSI-2, but not ZmS3H, suppressed HR conferred by Rp1-D21 and its signaling domain CCD21 when transiently expressed in N. benthamiana. ZmFNSI-1 and ZmFNSI-2 physically interacted with CCD21. Furthermore, ZmFNSI-1 and ZmFNSI-2 interacted with HCT, a key enzyme in lignin biosynthesis pathway, which can also suppress Rp1-D21-mediated HR. These results lay the foundation for the further functional analysis of the roles of FNSI in plant innate immunity. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Review

Jump to: Research

Review
The Current State of Knowledge about Essential Oil Fumigation for Quality of Crops during Postharvest
Int. J. Mol. Sci. 2021, 22(24), 13351; https://doi.org/10.3390/ijms222413351 - 12 Dec 2021
Cited by 1 | Viewed by 761
Abstract
Prolonging crops’ shelf-life while retaining their high quality is a major issue related to postharvest management. During storage, fruits and vegetables are exposed to microbial attacks, which may cause spoilage. Crop deterioration causes the loss of physical properties and drops in quality and [...] Read more.
Prolonging crops’ shelf-life while retaining their high quality is a major issue related to postharvest management. During storage, fruits and vegetables are exposed to microbial attacks, which may cause spoilage. Crop deterioration causes the loss of physical properties and drops in quality and nutritional value. Hence, new techniques to improve the resistance of food products are being explored. One promising technique is fumigation. Essential oils and their constituents, due to their antimicrobial properties, are likely to be used as fumigants, as they are highly volatile, effective in low concentrations, biodegradable, and safe. Papers indicate that some of them can improve their quality by increasing the content of antioxidants. This comprehensive review aims to present the current state of knowledge about the influence of essential oil fumigation on crop quality. It covers antioxidant capacity, the content of some bioactive compounds, physicochemical properties, decay properties, and sensory attributes of fruits and vegetables treated with essential oil vapors. The review indicates that this technique might be an interesting field for further exploration due to the promising results presented in the studies. Moreover, the review presents major objectives for current studies and indicates a lack of recent papers in this field. Full article
(This article belongs to the Special Issue Plant Health and Food Security)
Show Figures

Figure 1

Back to TopTop