ijms-logo

Journal Browser

Journal Browser

Type 2 Diabetes: Molecular Pathophysiology and Treatment

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Endocrinology and Metabolism".

Deadline for manuscript submissions: 20 December 2025 | Viewed by 706

Special Issue Editor


E-Mail
Guest Editor
Institute of Molecular Life Sciences, HUN-REN Research Centre for Natural Sciences, 1117 Budapest, Hungary
Interests: flow cytometry; membrane transporters; type 2 diabetes; gout; rheumatoid arthritis; genotyping; function and regulation of ABC membrane transporter proteins; red blood cells; immunometabolism

Special Issue Information

Dear Colleagues,

Type 2 diabetes mellitus (T2DM) is a prevalent chronic metabolic disorder affecting over 400 million individuals globally, characterized by hyperglycemia resulting from insulin resistance and/or relative insulin deficiency. Representing approximately 90% of all diabetes cases, T2DM is a multifactorial disease, influenced by genetic predisposition, lifestyle factors, hormonal imbalances, infections, and pharmacological agents. This complexity presents significant challenges in the accurate diagnosis and effective management of the disease. Prolonged T2DM increases the risk of serious complications, including cardiovascular disease, stroke, kidney failure, peripheral ischemia, and retinopathy, while the presence of comorbid conditions further exacerbates the burden on patients.

This Special Issue aims to compile cutting-edge original research and review articles exploring the bioinformatics, molecular, genetic, and immunological mechanisms underlying T2DM pathogenesis, as well as their potential as predictive, preventive, and prognostic markers. Additionally, this Special Issue invites research and review articles that present state-of-the-art advancements in therapeutic approaches for T2DM, highlighting innovative treatments and emerging strategies aimed at improving disease management and patient outcomes.

Dr. Edit Szabó
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • type 2 diabetes mellitus and comorbidity
  • bioinformatics
  • molecular pathways
  • genetic background
  • biomarkers
  • novel therapies

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 1969 KiB  
Article
Genetic Variants of the Human Thiamine Transporter (SLC19A3, THTR2)—Potential Relevance in Metabolic Diseases
by Edit Szabó, Márton Pálinkás, Balázs Bohár, Botond Literáti-Nagy, László Korányi, Gyula Poór, György Várady and Balázs Sarkadi
Int. J. Mol. Sci. 2025, 26(7), 2972; https://doi.org/10.3390/ijms26072972 - 25 Mar 2025
Viewed by 412
Abstract
Thiamine, crucial for energy metabolism, is associated with various human diseases when deficient. We studied how variations in the SLC19A3 gene, encoding THTR2, a thiamine transporter, may influence type 2 diabetes (T2DM) and gout (arthritis urica, AU). We characterized the SLC19A3 gene variants [...] Read more.
Thiamine, crucial for energy metabolism, is associated with various human diseases when deficient. We studied how variations in the SLC19A3 gene, encoding THTR2, a thiamine transporter, may influence type 2 diabetes (T2DM) and gout (arthritis urica, AU). We characterized the SLC19A3 gene variants using bioinformatics and analyzed DNA samples from controls, T2DM, and gout patients to explore associations with physical/laboratory parameters. In human cells, we used a luciferase reporter assay to assess how these variants affect gene expression. We examined four large haplotypes (H1–4) in this gene, identified lead SNPs for the minor variants (MV), and explored potential transcription factor binding sites. We found that in T2DM patients, H3-MV correlated significantly with impaired glucose metabolism (pHOMA = 0.0189, pHbA1c% = 0.0102), while H4-MV correlated with altered uric acid (p = 0.0008) and white blood cell levels (p = 0.0272). In AU patients, H3-MV correlated with increased basophil granulocyte levels (p = 0.0273). In model cell lines, H3-MV presence increased gene expression (p = 0.0351), influencing responses to thiamine depletion and metformin (p = 0.0016). Although H4-MV did not directly affect luciferase expression, thiamine and fedratinib co-treatment significantly enhanced gene expression in thiamine-depleted cells (p = 0.04854). Our results suggest a connection between selected SLC19A3 variants and the severity of metabolic diseases or their response to treatment. Full article
(This article belongs to the Special Issue Type 2 Diabetes: Molecular Pathophysiology and Treatment)
Show Figures

Figure 1

Back to TopTop