ijms-logo

Journal Browser

Journal Browser

Toxicological Impacts of Emerging Contaminants on Aquatic Organisms

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Toxicology".

Deadline for manuscript submissions: 20 February 2026 | Viewed by 1997

Special Issue Editor


E-Mail Website
Guest Editor
School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, USA
Interests: aquatic toxicology; environmental pollution; ecotoxicology; neuroendocrine toxicology; bioremediation

Special Issue Information

Dear Colleagues,

Emerging contaminants—including microplastics, engineered nanoparticles, pesticides, pharmaceuticals, personal care products, PFAS, and industrial chemicals—are increasingly detected in freshwater and marine environments. These pollutants pose complex risks to aquatic organisms, with growing evidence of their roles in inducing oxidative stress, immunotoxicity, neurotoxicity, endocrine disruption, and reproductive impairments. Despite extensive environmental monitoring, the molecular and cellular mechanisms underlying these toxic effects remain underexplored. Understanding how these stressors interact with biological systems is critical for assessing ecological risks and guiding environmental policy.

This Special Issue aims to gather cutting-edge research and reviews that explore the toxicological impacts of emerging contaminants on aquatic organisms at molecular, cellular, biochemical, physiological, and behavioral levels. We welcome submissions focused on biomarker development, mechanistic toxicology, bioremediation strategies, climate change–pollutant interactions, and omics-based approaches (e.g., transcriptomics, proteomics, and metabolomics). Studies utilizing model or non-model aquatic species, including fish and invertebrates, are encouraged. Emphasis will be placed on interdisciplinary work that advances our understanding of pollutant-induced health effects and supports the development of mitigation and regulatory strategies.

Dr. Mohamed Hamed
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 250 words) can be sent to the Editorial Office for assessment.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • aquatic toxicology
  • emerging contaminants
  • physiology and behavior
  • oxidative stress
  • antioxidant biomarkers
  • immunotoxicity
  • neuroendocrine toxicity
  • bioremediation
  • molecular mechanisms

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

17 pages, 2309 KB  
Article
Endocrine Disruption in Freshwater Cladocerans: Transcriptomic Network Perspectives on TBOEP and PFECHS Impacts in Daphnia magna
by Hyun Woo Kim, Seok-Gyu Yun, Ju Yeon Park, Jun Lee, Jun Pyo Han, Dong Yeop Shin, Jong Hun Lee, Eun-Min Cho and Young Rok Seo
Int. J. Mol. Sci. 2025, 26(24), 12146; https://doi.org/10.3390/ijms262412146 - 17 Dec 2025
Abstract
Freshwater cladocerans such as Daphnia magna (D. magna) are keystone grazers whose hormone-regulated life history traits make them sensitive sentinels of endocrine-disrupting chemicals (EDCs). The organophosphate flame-retardant tris(2-butoxyethyl) phosphate (TBOEP) and perfluoroethylcyclohexane sulfonate (PFECHS) now co-occur at ng L−1–µg [...] Read more.
Freshwater cladocerans such as Daphnia magna (D. magna) are keystone grazers whose hormone-regulated life history traits make them sensitive sentinels of endocrine-disrupting chemicals (EDCs). The organophosphate flame-retardant tris(2-butoxyethyl) phosphate (TBOEP) and perfluoroethylcyclohexane sulfonate (PFECHS) now co-occur at ng L−1–µg L−1 in surface waters, yet their chronic sub-lethal impacts on invertebrate endocrine networks remain unclear. We analysed two publicly available 21-day microarray datasets (TBOEP: GSE55132; PFECHS: GSE75607) using gene ontology enrichment, STRING protein interaction networks, Drosophila phenotype mapping, and KEGG (Kyoto Encyclopaedia of Genes and Genomes)-anchored frameworks to build putative adverse outcome pathways (AOPs) for D. magna. Differentially expressed genes were clustered into functional modules and hub nodes were ranked by degree and betweenness. TBOEP suppressed moulting and growth, altering 1157 genes enriched for metabolism and membrane processes; hubs VRK1, MIB2, and adenylosuccinate synthetase formed a muscle anatomical development sub-network. PFECHS down-regulated vitellogenin and shifted 879 genes dominated by oxidative-stress and glutathione-metabolism signatures; central nodes UBC9, eIF4A-III, Tra-2α, and HDAC1 linked meiotic-cycle, oogenesis, and cyclic-compound binding. Despite chemical dissimilarity, both compounds converged on Wnt-signalling nodes—TBOEP via presenilin-1, and PFECHS via CK1ε/CK2—thereby reducing TCF/LEF-dependent transcription. Predicted outcomes include impaired oocyte maturation, reduced fecundity, and stunted body size, consistent with observed decreases in length and vitellogenin protein. Our network analysis, based on high-dose, sub-lethal exposures used in the underlying microarray studies, indicates that TBOEP- and PFECHS-induced perturbations can destabilise endocrine, developmental, and metabolic pathways in D. magna without overt lethality, and highlights Wnt-centred key events and hub genes as candidate biomarkers to be evaluated in future low-dose studies that use environmentally realistic exposure scenarios. Hub genes and Wnt-mediated key events emerge as sensitive biomarkers for monitoring mixed EDC exposure. Full article
(This article belongs to the Special Issue Toxicological Impacts of Emerging Contaminants on Aquatic Organisms)
Show Figures

Figure 1

18 pages, 2063 KB  
Article
Utilization of Aflatoxin-B1-Contaminated Corn by Yellow Mealworm Larvae for Common Carp Feed and Assessing Residual Frass Toxicity by Zebrafish Embryo Microinjection
by Zoltán Vajnai, Zsolt Csenki-Bakos, Balázs Csorbai, Tamás Bartucz, Illés Bock, Endre Csókás, Mátyás Cserháti, Balázs Kriszt and István Szabó
Int. J. Mol. Sci. 2025, 26(20), 9851; https://doi.org/10.3390/ijms26209851 - 10 Oct 2025
Viewed by 742
Abstract
The aim of our study was to make one step further to verify a method that can turn back mycotoxin-contaminated crops into the circular economy. Thus, the possibility of utilizing aflatoxin B1 (AfB1)-contaminated corn by yellow mealworms (Tenebrio molitor) was investigated [...] Read more.
The aim of our study was to make one step further to verify a method that can turn back mycotoxin-contaminated crops into the circular economy. Thus, the possibility of utilizing aflatoxin B1 (AfB1)-contaminated corn by yellow mealworms (Tenebrio molitor) was investigated to be used as fish feed components. Four different self-contaminated corn samples were used in our study, of which one was below and three were above the threshold limit (20 µg/kg) regulated by the European Union. The highest applied AfB1 concentration in our study for insect feeding was 415 µg/kg (more than twenty times higher than the threshold). After a five-week feeding period insect mortality was not increased, even in the highly contaminated group, compared to the negative control. The mycotoxin in the dried and ground insects was only detected in the case of feeding with the highest-concentration corn, however it remained as low as 2.2 µg/kg. For studying the possible physiology effects, insect grounds were used in feeding experiments of common carp (Cyprinus carpio) fries. Results showed that insect meal, even if originated from a highly mycotoxin-contaminated crop, did not have a significant effect on the examined fish fries, compared with the control groups. The AfB1 concentrations of the leftover frass after insect rearing were also measured, and in the case of the highest concentration mealworm group, it was 157.6 µg/kg (other groups were under 20 µg/kg). Toxicity of frass extracts from different contaminated groups was also studied using microinjected zebrafish (Danio rerio) embryos. Extracts of the highly contaminated frass samples caused 91.67 ± 3.33% mortality and led to numerous phenotypic changes, which highlights the need for responsible usage of the by-product. However, the effects of injected frass samples, originating from corn with lower and more environmentally relevant AfB1 concentrations, were significantly lower. Full article
(This article belongs to the Special Issue Toxicological Impacts of Emerging Contaminants on Aquatic Organisms)
Show Figures

Graphical abstract

16 pages, 2961 KB  
Article
Ecotoxicological Impacts of Perfluorooctane Sulfonate on the Freshwater Snail Lanistes carinatus: Oxidative Stress, Neurotoxicity, and Histopathological Alterations
by Mohamed Hamed, Mohammed Abdel-Wahab, Rashad E. M. Said and Alaa El-Din H. Sayed
Int. J. Mol. Sci. 2025, 26(18), 8898; https://doi.org/10.3390/ijms26188898 - 12 Sep 2025
Viewed by 858
Abstract
Perfluorooctane sulfonate (PFOS), which is known for its environmental persistence and bioaccumulation, poses substantial impacts to aquatic ecosystems. This study assesses the toxic effects of PFOS in the freshwater snail Lanistes carinatus using biomarkers for antioxidant activity, neurotoxicity, and tissue damage. Snails exposed [...] Read more.
Perfluorooctane sulfonate (PFOS), which is known for its environmental persistence and bioaccumulation, poses substantial impacts to aquatic ecosystems. This study assesses the toxic effects of PFOS in the freshwater snail Lanistes carinatus using biomarkers for antioxidant activity, neurotoxicity, and tissue damage. Snails exposed to PFOS (1, 3, 10 mg/L for 14 days) displayed lipid peroxidation (LPO) levels that increased by 16.3–67.5%, and malondialdehyde (MDA) levels that rose by 10.0–58.4%, indicating oxidative damage. Enzyme activities for glutathione S-transferase (GST), glutathione peroxidase (GPx), and catalase (CAT) increased, ranging from 10.0 to 58.3%, 10.0 to 58.4%, and 10.0 to 58.4%, respectively, whereas levels of reduced glutathione (GSH) dropped by 15.0–41.5% and Superoxide dismutase (SOD) decreased by 15.0–41.4%. The activity of acetylcholinesterase (AchE) was reduced by a range of 15.0–40.0%, suggesting neurotoxic effects. Histopathological changes in the digestive gland were also noted. Further research on the effects of PFOS on mollusks is required, and investigation into sex-specific toxicity is needed. This shed light on L. carinatus as a sentinel species, providing helpful information for the monitoring and regulation of PFOS in aquatic environments. Full article
(This article belongs to the Special Issue Toxicological Impacts of Emerging Contaminants on Aquatic Organisms)
Show Figures

Figure 1

Back to TopTop