ijms-logo

Journal Browser

Journal Browser

Molecular and Cellular Therapeutics for Respiratory Diseases

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 30 November 2025 | Viewed by 89

Special Issue Editor


E-Mail Website
Guest Editor
Center on Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
Interests: cystic fibrosis; ivacaftor; inflammation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues, 

Respiratory diseases represent a major cause of morbidity and mortality worldwide. In many conditions, such as cystic fibrosis (CF), chronic obstructive pulmonary disease (COPD), asthma, and infectious lung diseases, dysfunctions at the level of the airway epithelium can lead to mucus accumulation, infection, inflammation, and ultimately, respiratory failure. While patients carrying some mutations in the CFTR gene can benefit from advances such as CFTR modulators, a therapy for orphan CF mutations, as well as other respiratory disorders, is under development through innovative therapeutic strategies. Moreover, in CF as in several other respiratory diseases, airway infections and antibiotic resistance remain major challenges, sustaining chronic inflammation and interfering with the efficacy of current treatments. Molecular therapeutics have been developed in recent years and could be exploited in a variety of respiratory diseases to correct mutations, reduce inflammation, and target pathogens through novel antibacterial and antiviral agents.

A key challenge in respiratory research is the lack of adequate ex vivo and preclinical models. The development of 3D respiratory structures, such as organoids and lung/airway-on-chip systems, has provided new tools for studying lung diseases. These models offer promising platforms for developing novel therapeutic approaches across a broad spectrum of pulmonary conditions and can also support advanced drug delivery studies.

This Special Issue invites original articles and reviews focused on molecular and cellular therapeutic strategies in respiratory diseases, including:

  • Molecular or pharmacological correction or modulation of defective proteins;
  • Transfection of differentiated airway epithelia;
  • Pathogen infection and antibiotic/antiviral resistance;
  • Advanced techniques for drug delivery;
  • 3D models suitable for drug testing and disease modeling.

Dr. Roberto Plebani
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lung diseases
  • cystic fibrosis
  • chronic obstructive pulmonary disease
  • asthma
  • drug delivery

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

14 pages, 3230 KiB  
Article
CFAP300 Loss-of-Function Mutations with Primary Ciliary Dyskinesia: Evidence from Ex Vivo and ALI Cultures
by Anna G. Demchenko, Tatiana A. Kyian, Elena I. Kondratyeva, Elizaveta E. Bragina, Oksana P. Ryzhkova, Roman V. Veiko, Aleksandra G. Nazarova, Vyacheslav B. Chernykh, Svetlana A. Smirnikhina and Sergey I. Kutsev
Int. J. Mol. Sci. 2025, 26(15), 7655; https://doi.org/10.3390/ijms26157655 (registering DOI) - 7 Aug 2025
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using [...] Read more.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using a multimodal approach, we integrated molecular genetic testing, transmission electron microscopy, the high-speed video microscopy assay and immunofluorescence staining to analyze ciliary motility and protein expression in both ex vivo and in vitro-obtained ciliary cells. Our results revealed that the pathogenic variant c.198_200delinsCC (p.Phe67ProfsTer10) in CFAP300 led to the absence of the functional CFAP300 protein, the complete loss of outer and inner dynein arms and immotile cilia. Air–liquid interface (ALI)-cultured cells from patients exhibited no ciliary beating, contrasting with healthy controls. Immunostaining confirmed the absence of CFAP300 in patient-derived cilia, underscoring its critical role in dynein arm assembly. These findings highlight the diagnostic utility of ALI cultures combined with functional and protein analyses for PCD, offering a clinically actionable framework that can be readily incorporated into standard diagnostic workflows. Full article
(This article belongs to the Special Issue Molecular and Cellular Therapeutics for Respiratory Diseases)
Show Figures

Figure 1

Back to TopTop