ijms-logo

Journal Browser

Journal Browser

Stem Cells in Health and Disease: 3rd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: 20 April 2026 | Viewed by 4456

Special Issue Editor


E-Mail Website
Guest Editor
1. Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark
2. Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
Interests: stem cells; leukemia; lymphoma; sarcoma; gene therapy; proteomics; imaging flow cytometry

Special Issue Information

Dear Colleagues,

In recent years, our knowledge about the dual role of stem cells in health and disease has increased significantly. However, the biological and molecular mechanisms of this double function are yet to be fully understood.

New advancements in stem-cell research open a new door for patients suffering from diseases not yet successfully treated. Stem-cell-based therapy, including embryonic stem cells, human pluripotent stem cells, multipotent mesenchymal stem cells, and neural stem cells, has recently emerged as a key player in regenerative medicine because of the inherent ability of these stem cells to self-renew and the potential to differentiate into other cell types. Moreover, recent advances in cell-reprogramming and genome-editing technologies have provided additional tools for developing more effective and tailored stem-cell-based therapies.

This Special Issue aims to highlight stem-cell biology in both physiological and pathological conditions, thus expanding the current knowledge and boosting innovative diagnostic and/or therapeutic applications.

Original and review articles, including basic studies, are all welcome for consideration. Research topics may include (but are not limited to) the following:

  • Molecular and cellular mechanisms governing stem-cell physiology, i.e., self-renewal signaling pathways, differentiation, and metabolic plasticity;
  • Microenvironmental regulators of stem-cell plasticity and mutual interconversion between healthy and non-healthy stem cells;
  • Cancer stem cell (CSC) involvement in tumor progression and molecular drivers and mechanisms underlying CSC therapy resistance;
  • Therapeutic application of stem cells in experimental settings.

Dr. Maja Ludvigsen
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • stem cell regulation
  • differentiation
  • pluripotency
  • reprogramming
  • stem cell therapy
  • cancer stem cell/tumor-initiating cell
  • therapy resistance
  • regenerative medicine
  • metabolic plasticity

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issues

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 2404 KB  
Communication
Osteoporosis-Improving Effects of Extracellular Vesicles from Human Amniotic Membrane Stem Cells in Ovariectomized Rats
by Ka Young Kim, Khan-Erdene Tsolmon, Zolzaya Bavuu, Chan Ho Noh, Hyun-Soo Kim, Heon-Sang Jeong, Dongsun Park, Soon-Cheol Hong and Yun-Bae Kim
Int. J. Mol. Sci. 2025, 26(19), 9503; https://doi.org/10.3390/ijms26199503 - 28 Sep 2025
Viewed by 231
Abstract
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative [...] Read more.
Osteoporosis is a common skeletal disease characterized by decreased bone density, leading to bone fragility and fractures, especially in menopausal women. The purpose of this study is to confirm the anti-osteoporosis activity of stem cell extracellular vesicles (EVs) as a material of regenerative medicine. Mesenchymal stem cells have a potential to differentiate into osteocytes, so directly reconstruct bone tissue or facilitate bone regeneration via paracrine effects. Paracrine effects are mediated by functional molecules delivered in EVs released from stem cells. EVs containing high concentrations of growth factors (GFs) and neurotrophic factors (NFs) were attained via hypoxia culture of human amniotic membrane stem cells (AMSCs). From the EVs with a mean diameter of 77 nm, 751 proteins and 15 species of lipids were identified. Sprague-Dawley rats were ovariectomized, and eight weeks later, intravenously injected with EVs at doses of 1 × 108, 3 × 108 or 1 × 109 particles/100 μL/body, weekly for eight weeks. One week after the final administration, the serum and bone parameters related to bone density were analyzed. Serum 17β-estradiol, alkaline phosphatase, and calcium levels that decreased in ovariectomized rats were restored by EVs in a dose-dependent manner. Bone parameters such as bone mineral density, bone mineral content, bone volume/tissue volume ratio, trabecular number, trabecular space, and bending strength were also improved by treatment with EVs. Such effects were confirmed by morphological findings of micro-computed tomography. Taken together, it is suggested that AMSC-EVs containing high concentrations of GFs and NFs preserve bone soundness by promoting bone regeneration and inhibiting bone resorption. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

16 pages, 1758 KB  
Article
Hepatocyte Growth Factor-Mediated Chondrocyte Proliferation Induced by Adipose-Derived MSCs from Osteoarthritis Patients and Its Synergistic Enhancement by Hyaluronic Acid
by Samuel Jaeyoon Won, Hyun-Joo Lee, Dae-Yong Kim, Hyeonjeong Noh, Song yi Lee, Ji Ae Yoo, Yoon Sang Jeon, Heebeom Shin and Dong Jin Ryu
Int. J. Mol. Sci. 2025, 26(19), 9296; https://doi.org/10.3390/ijms26199296 - 23 Sep 2025
Viewed by 311
Abstract
Mesenchymal stem cells (MSCs) spontaneously assemble into three-dimensional (3D) spheroids under matrix-deficient conditions such as the synovial cavity, although their functional significance has yet to be fully elucidated. In this study, we used concave microwell cultures to promote the spontaneous aggregation of adipose-derived [...] Read more.
Mesenchymal stem cells (MSCs) spontaneously assemble into three-dimensional (3D) spheroids under matrix-deficient conditions such as the synovial cavity, although their functional significance has yet to be fully elucidated. In this study, we used concave microwell cultures to promote the spontaneous aggregation of adipose-derived MSCs (ASCs) from OA patients, thereby mimicking the intra-articular microenvironment. We analyzed the paracrine factors of ASC aggregates and compared it with that of conventional 2D monolayer cultures. Notably, 3D aggregation significantly increased the secretion of HGF and VEGF, whereas FGF2 levels remained relatively unchanged. These results indicate that the structural characteristics of ASC aggregates enhance the secretion of key paracrine factors involved in angiogenesis and tissue repair. To functionally evaluate the biological relevance of the secreted factors, conditioned media (CM) from ASC aggregates were applied to human articular chondrocytes. The CM significantly promoted chondrocyte proliferation, an effect that was abolished by the addition of HGF-neutralizing antibodies, thereby highlighting HGF as a central mediator of the regenerative response. Additionally, we further explored whether extracellular factors could modulate growth factor expression such as HGF. In this context, we investigated the impact of low-concentration hyaluronic acid (HA), a key synovial component widely used in OA treatment. Co-treatment with HA not only amplified the expression and secretion of HGF, VEGF, and FGF2, but also promoted ASC proliferation. ASCs forming functional aggregates may exert regenerative effects as active paracrine modulators, and the addition of low-dose hyaluronic acid is expected to further enhance this function, offering a promising strategy for MSC-based osteoarthritis therapy. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

Review

Jump to: Research

21 pages, 1033 KB  
Review
The Use of Neurons Derived from Pluripotent Stem Cells to Study Nerve–Cancer Cell Interactions
by Adriana Jiménez, Adolfo López-Ornelas, Neptali Gutiérrez-de la Cruz, Jonathan Puente-Rivera, Rodolfo David Mayen-Quinto, Anahí Sánchez-Monciváis, Iván Ignacio-Mejía, Exsal M. Albores-Méndez, Marco Antonio Vargas-Hernández and Enrique Estudillo
Int. J. Mol. Sci. 2025, 26(7), 3057; https://doi.org/10.3390/ijms26073057 - 27 Mar 2025
Viewed by 1843
Abstract
Tumor innervation is a complex interaction between nerves and cancer cells that consists of axons invading tumors, and its complexity remains largely unknown in humans. Although some retrospective studies have provided important insights into the relationship between nerves and tumors, further knowledge is [...] Read more.
Tumor innervation is a complex interaction between nerves and cancer cells that consists of axons invading tumors, and its complexity remains largely unknown in humans. Although some retrospective studies have provided important insights into the relationship between nerves and tumors, further knowledge is required about this biological process. Animal experiments have elucidated several molecular and cellular mechanisms of tumor innervation; however, no experimental models currently exist to study interactions between human cancer and nerve cells. Human pluripotent stem cells can differentiate into neurons for research purposes; however, the use of these neurons to study interactions with cancer cells remains largely unexplored. Hence, here we analyze the potential of human pluripotent stem cells to study the interaction of cancer cells and neurons derived from human pluripotent stem cells to unravel the poorly understood mechanisms of human tumor innervation. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

14 pages, 1766 KB  
Review
Influence of Super-Low-Intensity Microwave Radiation on Mesenchymal Stem Cells
by Mikhail Yu. Artamonov, Felix A. Pyatakovich and Inessa A. Minenko
Int. J. Mol. Sci. 2025, 26(4), 1705; https://doi.org/10.3390/ijms26041705 - 17 Feb 2025
Viewed by 1465
Abstract
Mesenchymal stem cells (MSCs) have emerged as a promising tool for regenerative medicine due to their multipotency and immunomodulatory properties. According to recent research, exposing MSCs to super-low-intensity microwave radiation can have a significant impact on how they behave and operate. This review [...] Read more.
Mesenchymal stem cells (MSCs) have emerged as a promising tool for regenerative medicine due to their multipotency and immunomodulatory properties. According to recent research, exposing MSCs to super-low-intensity microwave radiation can have a significant impact on how they behave and operate. This review provides an overview of the most recent studies on the effects of microwave radiation on MSCs with power densities that are much below thermal values. Studies repeatedly show that non-thermal mechanisms affecting calcium signaling, membrane transport, mitochondrial activity, along ion channel activation may increase MSC proliferation, differentiation along mesodermal lineages, paracrine factor secretion, and immunomodulatory capabilities during brief, regulated microwave exposures. These bioeffects greatly enhance MSC regeneration capability in preclinical models of myocardial infarction, osteoarthritis, brain damage, and other diseases. Additional study to understand microwave treatment settings, biological processes, and safety assessments will aid in the translation of this unique, non-invasive strategy of activating MSCs with microwave radiation to improve cell engraftment, survival, and tissue healing results. Microwave-enhanced MSC treatment, if shown safe and successful, might have broad relevance as a novel cell-based approach for a variety of regenerative medicine applications. Full article
(This article belongs to the Special Issue Stem Cells in Health and Disease: 3rd Edition)
Show Figures

Figure 1

Back to TopTop