ijms-logo

Journal Browser

Journal Browser

Special Issue "Cell Signaling in Model Plants 2.0"

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: 15 December 2020.

Special Issue Editors

Dr. Parviz Heidari
Website
Guest Editor
Department of Horticultural Sciences, Faculty of Agriculture, Shahrood University of Technology, Shahrood
Interests: signal transduction; plant hormone; bioinformatics
Special Issues and Collections in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue is the continuation of our previous special issue "Cell Signaling in Model Plants"

Plants as sessile organisms are not able to move and must respond to adverse environmental conditions/stress such as high salinity, heat, cold, drought, oxidative stress, and pathogen attack. Signal transduction is a complex network of interactions that signal elements (physical and chemical) are transmitted through the plant cell to respond to environmental stimuli. Receptors, protein kinases, transcription factors, intracellular calcium, ROS, and hormones are the main components of signal transduction pathway that regulate or stimulate other cell signal components.

This Special Issue explores the role of signaling components in model plants, such as Antirrhinum, Arabidopsis thaliana, Lotus japonicas, Medicago truncatula, rice, tobacco, and Zea mays, which have led to adaptation and resistance against abiotic and biotic stresses, including but not limited to functional analysis of key genes, hormone contents, signal transduction networks, gene expression profiling, and post-translation modifications.

Dr. Jen-Tsung Chen
Dr. Parviz Heidari
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • hormones profiling
  • cell receptors
  • abiotic stress
  • biotic stress
  • transcription factors
  • micro RNA
  • regulatory elements
  • protein kinases
  • protein–protein interaction
  • cellular responses
  • functional genomics
  • gene expression
  • enzyme activity
  • computational biology

Published Papers (4 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

Open AccessArticle
Modification of Serine 1040 of SIBRI1 Increases Fruit Yield by Enhancing Tolerance to Heat Stress in Tomato
Int. J. Mol. Sci. 2020, 21(20), 7681; https://doi.org/10.3390/ijms21207681 - 16 Oct 2020
Abstract
High temperature is a major environmental factor that adversely affects plant growth and production. SlBRI1 is a critical receptor in brassinosteroid signalling, and its phosphorylation sites have differential functions in plant growth and development. However, the roles of the phosphorylation sites of SIBRI1 [...] Read more.
High temperature is a major environmental factor that adversely affects plant growth and production. SlBRI1 is a critical receptor in brassinosteroid signalling, and its phosphorylation sites have differential functions in plant growth and development. However, the roles of the phosphorylation sites of SIBRI1 in stress tolerance are unknown. In this study, we investigated the biological functions of the phosphorylation site serine 1040 (Ser-1040) of SlBRI1 in tomato. Phenotype analysis indicated that transgenic tomato harbouring SlBRI1 dephosphorylated at Ser-1040 showed increased tolerance to heat stress, exhibiting better plant growth and plant yield under high temperature than transgenic lines expressing SlBRI1 or SlBRI1 phosphorylated at Ser-1040. Biochemical and physiological analyses further showed that antioxidant activity, cell membrane integrity, osmo-protectant accumulation, photosynthesis and transcript levels of heat stress defence genes were all elevated in tomato plants harbouring SlBRI1 dephosphorylated at Ser-1040, and the autophosphorylation level of SlBRI1 was inhibited when SlBRI1 dephosphorylated at Ser-1040. Taken together, our results demonstrate that the phosphorylation site Ser-1040 of SlBRI1 affects heat tolerance, leading to improved plant growth and yield under high-temperature conditions. Our results also indicate the promise of phosphorylation site modification as an approach for protecting crop yields from high-temperature stress. Full article
(This article belongs to the Special Issue Cell Signaling in Model Plants 2.0)
Show Figures

Figure 1

Open AccessArticle
Cell Type-Specific Imaging of Calcium Signaling in Arabidopsis thaliana Seedling Roots Using GCaMP3
Int. J. Mol. Sci. 2020, 21(17), 6385; https://doi.org/10.3390/ijms21176385 - 02 Sep 2020
Abstract
Cytoplasmic calcium ([Ca2+]cyt) is a well-characterized second messenger in eukaryotic cells. An elevation in [Ca2+]cyt levels is one of the earliest responses in plant cells after exposure to a range of environmental stimuli. Advances in understanding [...] Read more.
Cytoplasmic calcium ([Ca2+]cyt) is a well-characterized second messenger in eukaryotic cells. An elevation in [Ca2+]cyt levels is one of the earliest responses in plant cells after exposure to a range of environmental stimuli. Advances in understanding the role of [Ca2+]cyt in plant development has been facilitated by the use of genetically-encoded reporters such as GCaMP. Most of these studies have relied on promoters such as Cauliflower Mosaic Virus (35S) and Ubiquitin10 (UBQ10) to drive expression of GCaMP in all cell/tissue types. Plant organs such as roots consist of various cell types that likely exhibit unique [Ca2+]cyt responses to exogenous and endogenous signals. However, few studies have addressed this question. Here, we introduce a set of Arabidopsis thaliana lines expressing GCaMP3 in five root cell types including the columella, endodermis, cortex, epidermis, and trichoblasts. We found similarities and differences in the [Ca2+]cyt signature among these root cell types when exposed to adenosine tri-phosphate (ATP), glutamate, aluminum, and salt, which are known to trigger [Ca2+]cyt increases in root cells. These cell type-targeted GCaMP3 lines provide a new resource that should enable more in depth studies that address how a particular environmental stimulus is linked to specific root developmental pathways via [Ca2+]cyt. Full article
(This article belongs to the Special Issue Cell Signaling in Model Plants 2.0)
Show Figures

Figure 1

Open AccessArticle
Dephosphorylation of LjMPK6 by Phosphatase LjPP2C is Involved in Regulating Nodule Organogenesis in Lotus japonicus
Int. J. Mol. Sci. 2020, 21(15), 5565; https://doi.org/10.3390/ijms21155565 - 03 Aug 2020
Abstract
The mitogen-activated protein kinase (MAPK) LjMPK6 is a phosphorylation target of SIP2, a MAPK kinase that interacts with SymRK (symbiosis receptor-like kinase) for regulation of legume-rhizobia symbiosis. Both LjMPK6 and SIP2 are required for nodulation in Lotus japonicus. However, the dephosphorylation of [...] Read more.
The mitogen-activated protein kinase (MAPK) LjMPK6 is a phosphorylation target of SIP2, a MAPK kinase that interacts with SymRK (symbiosis receptor-like kinase) for regulation of legume-rhizobia symbiosis. Both LjMPK6 and SIP2 are required for nodulation in Lotus japonicus. However, the dephosphorylation of LjMPK6 and its regulatory components in nodule development remains unexplored. By yeast two-hybrid screening, we identified a type 2C protein phosphatase, LjPP2C, that specifically interacts with and dephosphorylates LjMPK6 in vitro. Physiological and biochemical assays further suggested that LjPP2C phosphatase is required for dephosphorylation of LjMPK6 in vivo and for fine-tuning nodule development after rhizobial inoculation. A non-phosphorylatable mutant variant LjMPK6 (T224A Y226F) could mimic LjPP2C functioning in MAPK dephosphorylation required for nodule development in hairy root transformed plants. Collectively, our study demonstrates that interaction with LjPP2C phosphatase is required for dephosphorylation of LjMPK6 to fine tune nodule development in L. japonicus. Full article
(This article belongs to the Special Issue Cell Signaling in Model Plants 2.0)
Show Figures

Figure 1

Review

Jump to: Research

Open AccessReview
Retrograde Signaling: Understanding the Communication between Organelles
Int. J. Mol. Sci. 2020, 21(17), 6173; https://doi.org/10.3390/ijms21176173 - 26 Aug 2020
Abstract
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point—and perhaps the only point that many agree on—is that our knowledge about cellular-signaling [...] Read more.
Understanding how cell organelles and compartments communicate with each other has always been an important field of knowledge widely explored by many researchers. However, despite years of investigations, one point—and perhaps the only point that many agree on—is that our knowledge about cellular-signaling pathways still requires expanding. Chloroplasts and mitochondria (because of their primary functions in energy conversion) are important cellular sensors of environmental fluctuations and feedback they provide back to the nucleus is important for acclimatory responses. Under stressful conditions, it is important to manage cellular resources more efficiently in order to maintain a proper balance between development, growth and stress responses. For example, it can be achieved through regulation of nuclear and organellar gene expression. If plants are unable to adapt to stressful conditions, they will be unable to efficiently produce energy for growth and development—and ultimately die. In this review, we show the importance of retrograde signaling in stress responses, including the induction of cell death and in organelle biogenesis. The complexity of these pathways demonstrates how challenging it is to expand the existing knowledge. However, understanding this sophisticated communication may be important to develop new strategies of how to improve adaptability of plants in rapidly changing environments. Full article
(This article belongs to the Special Issue Cell Signaling in Model Plants 2.0)
Show Figures

Figure 1

Back to TopTop