ijms-logo

Journal Browser

Journal Browser

Lignocellulose Bioconversion and High-Value Utilization

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Macromolecules".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 1967

Special Issue Editor


E-Mail Website
Guest Editor
Microbial Technology Institute, Shandong Univeristy, Qingdao 266237, China
Interests: lignocellulose-degrading enzymes; enzyme production; microorganisms producing cellulases, hemicellulases, pectinases, etc. and its engineering modification; pretreatment and fractionation of lignocellulisc biomass; degradation and bioconverison of lignocellulosic biomass; bioethanol from lignocellulose and corn; nanocellulose and its applicaiton; enzymaic degumming of bast fibers; functional utilization of lignocellulosic biomass
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lignocellulosic biomass, the most abundant sustainable carbon source on the planet, has been considered to be an alternative to fossil resources in the production of fuels, chemicals, and functional materials. Lignocellulose is composed of cellulose, hemicellulose, and lignin, which can be bio-converted into biofuels and chemicals via pretreatment, enzymatic hydrolysis, and fermentation. Many efforts have been made in recent years to develop new or superior pretreatment process, find novel enzymes, enzyme cocktails, and chemical catalysts, and create novel strains or chemical reactions, which promote the high-efficient conversion of lignocellulose. Furthermore, biomass-based functional materials have also been developed, expanding the range of high-value applications for lignocellulose. This Special Issue is aimed at presenting the state of the art in the lignocellulose bioconversion and high-value utilization. We invite authors to contribute their latest works in the form of original research and review articles. Potential topics include, but are not limited to, the following:

  1. Biomass pretreatment;
  2. The bioconversion process of cellulose, hemicellulose, and lignin;
  3. Novel enzymes and microorganisms that produce enzymes developed using genetic and metabolic engineering;
  4. Enzyme cocktails used in bioconversion;
  5. Novel chemical catalysts and their applications in biomass conversion such as biomass hydrolysis;
  6. Chemical reaction engineering for sustainable development;
  7. Lignocellulosic biomass-based functional materials and applications;
  8. Conversion and utilization of lignocellulosic biomass derived from grains, for example, seed husks from grain processing such as corn fiber.

Prof. Dr. Jian Zhao
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lignocellulosic biomass, including seed husks from grains
  • enzymes
  • microorganisms producing enzymes
  • chemical catalysts
  • biomass conversion
  • biofuels
  • bioproducts
  • fermentable sugars
  • biomass-based functional materials
  • lignocellulose nanoparticles

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 2060 KiB  
Article
Catalytic Efficiency Improvement in Cellobiohydrolase I by Cross-Species Domain Exchange Engineering
by Jing Xue, Xianzhang Jiang, Anjing Li, Jiaxin Li, Xiaoyun Su, Jianzhong Huang and Lina Qin
Int. J. Mol. Sci. 2025, 26(9), 4024; https://doi.org/10.3390/ijms26094024 - 24 Apr 2025
Viewed by 134
Abstract
Understanding the molecular mechanisms of cellobiohydrolase I (CBHI), a key enzyme in cellulase complexes, is crucial for developing efficient enzymes for the degradation of lignocellulosic biomasses (LCB). Building on our previous discovery that Chaetomium thermophilum CBHI (C-CBH) exhibits significantly higher specific activity than [...] Read more.
Understanding the molecular mechanisms of cellobiohydrolase I (CBHI), a key enzyme in cellulase complexes, is crucial for developing efficient enzymes for the degradation of lignocellulosic biomasses (LCB). Building on our previous discovery that Chaetomium thermophilum CBHI (C-CBH) exhibits significantly higher specific activity than Trichoderma reesei CBHI (T-CBH), systematic domain-swapping experiments were conducted to elucidate the structural determinants of catalytic efficiency in CBHI. Herein, the carbohydrate-binding modules (CBM) of the CBHIs from Trichoderma reesei (T-CBH) and Chaetomium thermophilum (C-CBH) were interchanged and to obtain two chimeric mutants TC-CBH and CT-CBH. These four CBHs were expressed in T. reesei, and the enzyme properties were analyzed. Comparative characterization revealed that while module exchange preserved native temperature/pH adaptability, it significantly altered substrate specificity and catalytic performance. The CT-CBH variant was identified as the most efficient biocatalyst, exhibiting four key advantages over T-CBH: (1) protein expression levels that far exceed those of T-CBH, (2) specific activity enhanced by 2.6-fold (734.5 U/μM vs. 282.5 U/μM on MU-cellobiose), (3) superior degradation capacities for filter paper (1.6-fold) and xylan, and (4) improved binding affinity for crystalline cellulose. These findings establish cross-species domain engineering as a viable strategy for creating high-performance cellulases, providing both mechanistic insights and practical solutions for lignocellulose degradation. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

13 pages, 3559 KiB  
Article
Biochemical and Structural Characterization of a Highly Glucose-Tolerant β-Glucosidase from the Termite Reticulitermes perilucifugus
by Guotao Mao, Ming Song, Hao Li, Junhan Lin, Kai Wang, Qian Liu, Zengping Su, Hongsen Zhang, Lijuan Su, Hui Xie and Andong Song
Int. J. Mol. Sci. 2025, 26(7), 3118; https://doi.org/10.3390/ijms26073118 - 28 Mar 2025
Viewed by 245
Abstract
The enzymatic hydrolysis of lignocellulose is often hindered by the glucose-mediated inhibition of β-glucosidases, a major bottleneck in industrial cellulose degradation. Identifying novel glucose-tolerant β-glucosidases is essential for enhancing saccharification efficiency. In this study, we cloned and heterologously expressed a novel β-glucosidase, RpBgl8, [...] Read more.
The enzymatic hydrolysis of lignocellulose is often hindered by the glucose-mediated inhibition of β-glucosidases, a major bottleneck in industrial cellulose degradation. Identifying novel glucose-tolerant β-glucosidases is essential for enhancing saccharification efficiency. In this study, we cloned and heterologously expressed a novel β-glucosidase, RpBgl8, from the termite Reticulitermes perilucifugus in Escherichia coli. Sequence and structural analyses classified RpBgl8 as a glycoside hydrolase family 1 enzyme. The purified enzyme exhibited optimal activity at 45 °C and pH 7.0, with broad stability across pH 4.0–8.0. Notably, RpBgl8 demonstrated high tolerance to lignocellulose-derived inhibitors and organic solvents, maintaining 100% activity in 15% ethanol. Furthermore, RpBgl8 exhibited outstanding glucose tolerance, retaining 100% activity at 2.5 M glucose and 82% activity at 4.0 M glucose—outperforming most previously reported β-glucosidases. A structural analysis revealed a narrow, hydrophobic substrate pocket, with residue F124 at the glycone-binding site critical for minimizing glucose accumulation. The F124W mutation significantly reduced glucose tolerance, confirming that hydrophobic interactions at the active site mitigate inhibition. These findings establish RpBgl8 as a promising candidate for high-solid biomass processing and simultaneous saccharification and fermentation applications, highlighting termites as underexplored sources of biocatalysts with unique industrial potential. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Graphical abstract

22 pages, 2720 KiB  
Article
Exploiting Mixed Waste Office Paper Containing Lignocellulosic Fibers for Alternatively Producing High-Value Succinic Acid by Metabolically Engineered Escherichia coli KJ122
by Walainud Congthai, Chutchawan Phosriran, Socheata Chou, Kanyarat Onsanoi, Chotika Gosalawit, Kuan-Chen Cheng and Kaemwich Jantama
Int. J. Mol. Sci. 2025, 26(3), 982; https://doi.org/10.3390/ijms26030982 - 24 Jan 2025
Cited by 1 | Viewed by 741
Abstract
Succinic acid is applied in many chemical industries in which it can be produced through microbial fermentation using lignocellulosic biomasses. Mixed-waste office paper (MWOP) containing lignocellulosic fibers is enormously generated globally. MWOP is recycled into toilet paper and cardboard, but the recovery process [...] Read more.
Succinic acid is applied in many chemical industries in which it can be produced through microbial fermentation using lignocellulosic biomasses. Mixed-waste office paper (MWOP) containing lignocellulosic fibers is enormously generated globally. MWOP is recycled into toilet paper and cardboard, but the recovery process is costly. The reuse of MWOP to alternatively produce succinic acid is highly attractive. In this study, pretreatment of MWOPs with 1% (v/v) H2SO4 at 121 °C for 20 min was found to be optimal. The optimal conditions for the enzymatic hydrolysis of H2SO4-pretreated MWOP (AP-MWOP) were at 50 °C, with cellulase loading at 80 PCU/g AP-MWOP. This resulted in the highest glucose (22.46 ± 0.15 g/L) and xylose (5.11 ± 0.32 g/L). Succinic acid production via separate hydrolysis and fermentation (SHF) by Escherichia coli KJ122 reached 28.19 ± 0.98 g/L (productivity of 1.17 ± 0.04 g/L/h). For simultaneous saccharification and fermentation (SSF), succinic acid was produced at 24.58 ± 2.32 g/L (productivity of 0.82 ± 0.07 g/L/h). Finally, succinic acid at 51.38 ± 4.05 g/L with yield and productivity of 0.75 ± 0.05 g/g and 1.07 ± 0.08 g/L/h was achieved via fed-batch pre-saccharified SSF. This study not only offers means to reuse MWOP for producing succinic acid but also provides insights for exploiting other wastes to high-value succinic acid, supporting environmental sustainability and zero-waste society. Full article
(This article belongs to the Special Issue Lignocellulose Bioconversion and High-Value Utilization)
Show Figures

Figure 1

Back to TopTop