ijms-logo

Journal Browser

Journal Browser

Biofunctionalization of Metals for Medical Application: Molecular Aspects

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Nanoscience".

Deadline for manuscript submissions: 20 January 2026 | Viewed by 348

Special Issue Editor

Special Issue Information

Dear Colleagues,

The molecular aspects of the biofunctionalization of metals for medical applications are of notable interest due to the involvement of cutting-edge technologies.

The aim of this Special Issue is to collect works that highlight how nanomaterials can be utilized to fight diseases, with a particular focus on nanofunctionalized materials, or new composites that work with new and extremely effective mechanisms, with reduced toxicity and efficacy at very low concentrations. We also seek to explore new molecular mechanisms that involve bacterial membranes with membrane polarity and quorum-sensing molecules. This new frontier will hopefully prove effective in overcoming bacterial resistance and triggering apoptotic processes.

Dr. Luca Scotti
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biofunctionalization
  • medical applications
  • nanomaterials
  • nanofunctionalized materials
  • molecular mechanisms
  • bacterial membranes
  • membrane polarity
  • bacterial resistance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

44 pages, 2147 KB  
Review
Recent Advances of Silver Nanoparticles in Wound Healing: Evaluation of In Vivo and In Vitro Studies
by Melis Kaya, Emir Akdaşçi, Furkan Eker, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(20), 9889; https://doi.org/10.3390/ijms26209889 - 11 Oct 2025
Viewed by 197
Abstract
Silver nanoparticles (AgNPs) have attracted significant attention in recent years in diverse fields owing to their broad mechanisms of action. In particular, the wound healing process has become one of the main fields where the therapeutic potential of AgNPs is highlighted. AgNPs can [...] Read more.
Silver nanoparticles (AgNPs) have attracted significant attention in recent years in diverse fields owing to their broad mechanisms of action. In particular, the wound healing process has become one of the main fields where the therapeutic potential of AgNPs is highlighted. AgNPs can be used as monotherapy or incorporated into composite structures in various formulations such as nanogels, hydrogels, powders, ointments, and sprays, for the treatment of a wide range of wound types including burns, excisional and incisional wounds, bone defects, surgical wounds, and diabetic ulcers. This widespread use is attributed to the strong antibacterial, anti-inflammatory, antioxidant, and cell proliferation-promoting biological properties of AgNPs. Moreover, AgNPs exhibit synergistic effects when combined with conventional antibiotics, enhancing their efficiency against resistant bacterial strains or even restoring the lost antibacterial activity. These biological properties enable AgNPs to reduce infection risk while simultaneously promoting high-quality healing by accelerating tissue regeneration. The therapeutic effectiveness of AgNPs is influenced by their physicochemical properties, including particle size, shape, and surface chemistry. In particular, synthesis methods play a significant role in determining both the biological activity and the safety profile of AgNPs. Among various methods, green synthesis approaches stand out for enabling the production of environmentally friendly, non-toxic, and highly biocompatible AgNPs. In this review, the mechanisms of action of AgNPs in wound healing are examined in detail, and recent scientific developments in this field are evaluated based on current in vitro, in vivo, and clinical studies. Full article
Show Figures

Figure 1

Back to TopTop