ijms-logo

Journal Browser

Journal Browser

Genes Function and Mechanism Identification in Plant Stress Resistance 2.0

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Genetics and Genomics".

Deadline for manuscript submissions: closed (15 January 2024) | Viewed by 22073

Special Issue Editor


E-Mail Website
Guest Editor
State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
Interests: cotton breeding; cotton functional gene identification
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Global warming and its exacerbation of extreme weather events has increased the prevalence of factors that affect the development of plants. These include droughts, high temperatures and low temperatures, which have become the common forms of abiotic stress in the development of plants, particularly in areas that produce crops such as cotton. Creating plant germplasms that are resistant to such forms of abiotic stress is urgently required.

This Special Issue will address a selection of recent research topics and current review articles in the field of exploiting, cloning and verifying novel genes related to plant stress resistance, and will also consider the factors of drought, high temperature and low temperature, among others. Bioinformatics papers, up-to-date review articles and commentaries are also welcome.

Dr. Hengling Wei
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cotton
  • plant
  • abiotic stresses
  • drought resistance
  • high-temperature resistance
  • low-temperature resistance
  • salt resistance

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Related Special Issues

Published Papers (13 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

20 pages, 2795 KiB  
Article
Genome-Wide Identification, Characterization, and Expression Analysis of the BES1 Family Genes under Abiotic Stresses in Phoebe bournei
by Jingshu Li, Honggang Sun, Yanhui Wang, Dunjin Fan, Qin Zhu, Jiangyonghao Zhang, Kai Zhong, Hao Yang, Weiyin Chang and Shijiang Cao
Int. J. Mol. Sci. 2024, 25(5), 3072; https://doi.org/10.3390/ijms25053072 - 6 Mar 2024
Viewed by 1184
Abstract
The BRI1 EMS suppressor 1(BES1) transcription factor is a crucial regulator in the signaling pathway of Brassinosteroid (BR) and plays an important role in plant growth and response to abiotic stress. Although the identification and functional validation of BES1 genes have been extensively [...] Read more.
The BRI1 EMS suppressor 1(BES1) transcription factor is a crucial regulator in the signaling pathway of Brassinosteroid (BR) and plays an important role in plant growth and response to abiotic stress. Although the identification and functional validation of BES1 genes have been extensively explored in various plant species, the understanding of their role in woody plants—particularly the endangered species Phoebe bournei (Hemsl.) Yang—remains limited. In this study, we identified nine members of the BES1 gene family in the genome of P. bournei; these nine members were unevenly distributed across four chromosomes. In our further evolutionary analysis of PbBES1, we discovered that PbBES1 can be divided into three subfamilies (Class I, Class II, and Class IV) based on the evolutionary tree constructed with Arabidopsis thaliana, Oryza sativa, and Solanum lycopersicum. Each subfamily contains 2–5 PbBES1 genes. There were nine pairs of homologous BES1 genes in the synteny analysis of PbBES1 and AtBES1. Three segmental replication events and one pair of tandem duplication events were present among the PbBES1 family members. Additionally, we conducted promoter cis-acting element analysis and discovered that PbBES1 contains binding sites for plant growth and development, cell cycle regulation, and response to abiotic stress. PbBES1.2 is highly expressed in root bark, stem bark, root xylem, and stem xylem. PbBES1.3 was expressed in five tissues. Moreover, we examined the expression profiles of five representative PbBES1 genes under heat and drought stress. These experiments preliminarily verified their responsiveness and functional roles in mediating responses to abiotic stress. This study provides important clues to elucidate the functional characteristics of the BES1 gene family, and at the same time provides new insights and valuable information for the regulation of resistance in P. bournei. Full article
Show Figures

Figure 1

18 pages, 4590 KiB  
Article
Caffeic Acid O-Methyltransferase Gene Family in Mango (Mangifera indica L.) with Transcriptional Analysis under Biotic and Abiotic Stresses and the Role of MiCOMT1 in Salt Tolerance
by Huiliang Wang, Zhuoli Chen, Ruixiong Luo, Chen Lei, Mengting Zhang, Aiping Gao, Jinji Pu and He Zhang
Int. J. Mol. Sci. 2024, 25(5), 2639; https://doi.org/10.3390/ijms25052639 - 24 Feb 2024
Viewed by 1251
Abstract
Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named [...] Read more.
Caffeic acid O-methyltransferase (COMT) participates in various physiological activities in plants, such as positive responses to abiotic stresses and the signal transduction of phytohormones. In this study, 18 COMT genes were identified in the chromosome-level reference genome of mango, named MiCOMTs. A phylogenetic tree containing nine groups (I-IX) was constructed based on the amino acid sequences of the 71 COMT proteins from seven species. The phylogenetic tree indicated that the members of the MiCOMTs could be divided into four groups. Quantitative real-time PCR showed that all MiCOMT genes have particularly high expression levels during flowering. The expression levels of MiCOMTs were different under abiotic and biotic stresses, including salt and stimulated drought stresses, ABA and SA treatment, as well as Xanthomonas campestris pv. mangiferaeindicae and Colletotrichum gloeosporioides infection, respectively. Among them, the expression level of MiCOMT1 was significantly up-regulated at 6–72 h after salt and stimulated drought stresses. The results of gene function analysis via the transient overexpression of the MiCOMT1 gene in Nicotiana benthamiana showed that the MiCOMT1 gene can promote the accumulation of ABA and MeJA, and improve the salt tolerance of mango. These results are beneficial to future researchers aiming to understand the biological functions and molecular mechanisms of MiCOMT genes. Full article
Show Figures

Figure 1

23 pages, 7825 KiB  
Article
Genome-Wide Identification and Characterization of Tomato Fatty Acid β-Oxidase Family Genes KAT and MFP
by Long Li, Zesheng Liu, Xuejuan Pan, Kangding Yao, Yuanhui Wang, Tingyue Yang, Guohong Huang, Weibiao Liao and Chunlei Wang
Int. J. Mol. Sci. 2024, 25(4), 2273; https://doi.org/10.3390/ijms25042273 - 14 Feb 2024
Cited by 3 | Viewed by 1237
Abstract
Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid β-oxidation pathway in plant [...] Read more.
Fatty acids and their derivatives play a variety of roles in living organisms. Fatty acids not only store energy but also comprise membrane lipids and act as signaling molecules. There are three main proteins involved in the fatty acid β-oxidation pathway in plant peroxisomes, including acyl-CoA oxidase (ACX), multifunctional protein (MFP), and 3-ketolipoyl-CoA thiolase (KAT). However, genome-scale analysis of KAT and MFP has not been systemically investigated in tomatoes. Here, we conducted a bioinformatics analysis of KAT and MFP genes in tomatoes. Their physicochemical properties, protein secondary structure, subcellular localization, gene structure, phylogeny, and collinearity were also analyzed. In addition, a conserved motif analysis, an evolutionary pressure selection analysis, a cis-acting element analysis, tissue expression profiling, and a qRT-PCR analysis were conducted within tomato KAT and MFP family members. There are five KAT and four MFP family members in tomatoes, which are randomly distributed on four chromosomes. By analyzing the conserved motifs of tomato KAT and MFP family members, we found that both KAT and MFP members are highly conserved. In addition, the results of the evolutionary pressure selection analysis indicate that the KAT and MFP family members have evolved mainly from purifying selection, which makes them more structurally stable. The results of the cis-acting element analysis show that SlKAT and SlMFP with respect may respond to light, hormones, and adversity stresses. The tissue expression analysis showed that KAT and MFP family members have important roles in regulating the development of floral organs as well as fruit ripening. The qRT-PCR analysis revealed that the expressions of SlKAT and SlMFP genes can be regulated by ABA, MeJA, darkness, NaCl, PEG, UV, cold, heat, and H2O2 treatments. These results provide a basis for the involvement of the SlKAT and SlMFP genes in tomato floral organ development and abiotic stress response, which lay a foundation for future functional study of SlKAT and SlMFP in tomatoes. Full article
Show Figures

Figure 1

15 pages, 13551 KiB  
Article
Overexpression of a ‘Beta’ MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana
by Jiaxin Han, Jing Dai, Zhe Chen, Wenhui Li, Xingguo Li, Lihua Zhang, Anqi Yao, Bingxiu Zhang and Deguo Han
Int. J. Mol. Sci. 2024, 25(3), 1534; https://doi.org/10.3390/ijms25031534 - 26 Jan 2024
Cited by 1 | Viewed by 1146
Abstract
‘Beta’ is a hybrid of Vitis riparia L. and V. labrusca and has a strong ability to adapt to adverse growth environments and is mainly cultivated and used as a resistant rootstock. At present, the most extensively studied MYB TFs are R2R3-type, which [...] Read more.
‘Beta’ is a hybrid of Vitis riparia L. and V. labrusca and has a strong ability to adapt to adverse growth environments and is mainly cultivated and used as a resistant rootstock. At present, the most extensively studied MYB TFs are R2R3-type, which have been found to be involved in plant growth, development, and stress response processes. In the present research, VhMYB15, a key transcription factor for abiotic stress tolerance, was screened by bioinformatics in ‘Beta’ rootstock, and its function under salinity and drought stresses was investigated. VhMYB15 was highly expressed in roots and mature leave under salinity and drought stresses. Observing the phenotype and calculating the survival rate of plants, it was found that VhMYB15-overexpressing plants exhibited relatively less yellowing and wilting of leaves and a higher survival rate under salinity and drought stresses. Consistent with the above results, through the determination of stress-related physiological indicators and the expression analysis of stress-related genes (AtSOS2, AtSOS3, AtSOS1, AtNHX1, AtSnRK2.6, AtNCED3, AtP5CS1, and AtCAT1), it was found that transgenic Arabidopsis showed better stress tolerance and stronger adaptability under salinity and drought stresses. Based on the above data, it was preliminarily indicated that VhMYB15 may be a key factor in salinity and drought regulation networks, enhancing the adaptability of ‘Beta’ to adverse environments. Full article
Show Figures

Figure 1

19 pages, 3664 KiB  
Article
Identification of the Abscisic Acid-, Stress-, and Ripening-Induced (ASR) Family Involved in the Adaptation of Tetragonia tetragonoides (Pall.) Kuntze to Saline–Alkaline and Drought Habitats
by Hao Liu, Qianqian Ding, Lisha Cao, Zengwang Huang, Zhengfeng Wang, Mei Zhang and Shuguang Jian
Int. J. Mol. Sci. 2023, 24(21), 15815; https://doi.org/10.3390/ijms242115815 - 31 Oct 2023
Cited by 1 | Viewed by 1156
Abstract
Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought stress are two major abiotic [...] Read more.
Tetragonia tetragonoides (Pall.) Kuntze (Aizoaceae, 2n = 2x = 32), a vegetable used for both food and medicine, is a halophyte that is widely distributed in the coastal areas of the tropics and subtropics. Saline–alkaline soils and drought stress are two major abiotic stressors that significantly affect the distribution of tropical coastal plants. Abscisic acid-, stress-, and ripening-induced (ASR) proteins belong to a family of plant-specific, small, and hydrophilic proteins with important roles in plant development, growth, and abiotic stress responses. Here, we characterized the ASR gene family from T. tetragonoides, which contained 13 paralogous genes, and divided TtASRs into two subfamilies based on the phylogenetic tree. The TtASR genes were located on two chromosomes, and segmental duplication events were illustrated as the main duplication method. Additionally, the expression levels of TtASRs were induced by multiple abiotic stressors, indicating that this gene family could participate widely in the response to stress. Furthermore, several TtASR genes were cloned and functionally identified using a yeast expression system. Our results indicate that TtASRs play important roles in T. tetragonoides’ responses to saline–alkaline soils and drought stress. These findings not only increase our understanding of the role ASRs play in mediating halophyte adaptation to extreme environments but also improve our knowledge of plant ASR protein evolution. Full article
Show Figures

Figure 1

18 pages, 10203 KiB  
Article
Photosynthesis Response and Transcriptional Analysis: Dissecting the Role of SlHB8 in Regulating Drought Resistance in Tomato Plants
by Yinghua Yang, Xinyue Zhang, Qiuxiang Zhong, Xiaojuan Liu, Hongling Guan, Riyuan Chen, Yanwei Hao and Xiaolong Yang
Int. J. Mol. Sci. 2023, 24(20), 15498; https://doi.org/10.3390/ijms242015498 - 23 Oct 2023
Viewed by 1616
Abstract
Deciphering drought resistance in crops is crucial for enhancing water productivity. Previous studies have highlighted the significant role of the transcription factor SlHB8 in regulating developmental processes in tomato plants but its involvement in drought resistance remains unclear. Here, gene overexpression (SlHB8 [...] Read more.
Deciphering drought resistance in crops is crucial for enhancing water productivity. Previous studies have highlighted the significant role of the transcription factor SlHB8 in regulating developmental processes in tomato plants but its involvement in drought resistance remains unclear. Here, gene overexpression (SlHB8-OE) and gene knockout (slhb8) tomato plants were utilized to study the role of SlHB8 in regulating drought resistance. Our findings showed that slhb8 plants exhibited a robust resistant phenotype under drought stress conditions. The stomata of slhb8 tomato leaves displayed significant closure, effectively mitigating the adverse effects of drought stress on photosynthetic efficiency. The slhb8 plants exhibited a decrease in oxidative damage and a substantial increase in antioxidant enzyme activity. Moreover, slhb8 effectively alleviated the degree of photoinhibition and chloroplast damage caused by drought stress. SlHB8 regulates the expression of numerous genes related to photosynthesis (such as SlPSAN, SlPSAL, SlPSBP, and SlTIC62) and stress signal transduction (such as SlCIPK25, SlABA4, and SlJA2) in response to drought stress. Additionally, slhb8 plants exhibited enhanced water absorption capacity and upregulated expression of several aquaporin genes including SlPIP1;3, SlPIP2;6, SlTIP3;1, SlNIP1;2, and SlXIP1;1. Collectively, our findings suggest that SlHB8 plays a negative regulatory role in the drought resistance of tomato plants. Full article
Show Figures

Figure 1

13 pages, 5480 KiB  
Article
Identification and Evolutionary Analysis of the Auxin Response Factor (ARF) Family Based on Transcriptome Data from Caucasian Clover and Analysis of Expression Responses to Hormones
by Jingwen Jiang, Zicheng Wang, Zirui Chen, Yuchen Wu, Meiqi Mu, Wanting Nie, Siwen Zhao, Guowen Cui and Xiujie Yin
Int. J. Mol. Sci. 2023, 24(20), 15357; https://doi.org/10.3390/ijms242015357 - 19 Oct 2023
Cited by 2 | Viewed by 1187
Abstract
Caucasian clover (Trifolium ambiguum M. Bieb.) is an excellent perennial plant in the legume family Fabaceae, with a well-developed rhizome and strong clonal growth. Auxin is one of the most important phytohormones in plants and plays an important role in plant growth [...] Read more.
Caucasian clover (Trifolium ambiguum M. Bieb.) is an excellent perennial plant in the legume family Fabaceae, with a well-developed rhizome and strong clonal growth. Auxin is one of the most important phytohormones in plants and plays an important role in plant growth and development. Auxin response factor (ARF) can regulate the expression of auxin-responsive genes, thus participating in multiple pathways of auxin transduction signaling in a synergistic manner. No genomic database has been established for Caucasian clover. In this study, 71 TaARF genes were identified through a transcriptomic database of Caucasian clover rhizome development. Phylogenetic analysis grouped the TaARFs into six (1–6) clades. Thirty TaARFs contained a complete ARF structure, including three relatively conserved regions. Physical and chemical property analysis revealed that TaARFs are unstable and hydrophilic proteins. We also analyzed the expression pattern of TaARFs in different tissues (taproot, horizontal rhizome, swelling of taproot, rhizome bud and rhizome bud tip). Quantitative real–time RT–PCR revealed that all TaARFs were responsive to phytohormones (indole-3-acetic acid, gibberellic acid, abscisic acid and methyl jasmonate) in roots, stems and leaves. These results helped elucidate the role of ARFs in responses to different hormone treatments in Caucasian clover. Full article
Show Figures

Figure 1

16 pages, 2151 KiB  
Article
Revealing Further Insights into Astringent Seeds of Chinese Fir by Integrated Metabolomic and Lipidomic Analyses
by Ping Zheng, Mengqian Shen, Ruoyu Liu, Xinkai Cai, Jinting Lin, Lulu Wang, Yu Chen, Guangwei Chen, Shijiang Cao and Yuan Qin
Int. J. Mol. Sci. 2023, 24(20), 15103; https://doi.org/10.3390/ijms242015103 - 12 Oct 2023
Cited by 2 | Viewed by 1210
Abstract
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands as one of the pivotal afforestation tree species and timber resources in southern China. Nevertheless, the occurrence of seed abortion and a notably high proportion of astringent seeds significantly curtail the yield and quality of [...] Read more.
Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) stands as one of the pivotal afforestation tree species and timber resources in southern China. Nevertheless, the occurrence of seed abortion and a notably high proportion of astringent seeds significantly curtail the yield and quality of elite seeds, resulting in substantial economic losses. The development of astringent seeds is accompanied by significant physiological and biochemical alterations. Here, the first combined lipidomic and metabolomic analysis was performed to gain a comprehensive understanding of astringent seed traits. A total of 744 metabolites and 616 lipids were detected, of which 489 differential metabolites and 101 differential lipids were identified. In astringent seeds, most flavonoids and tannins, as well as proline and γ-aminobutyric acid, were more accumulated, along with a notable decrease in lipid unsaturation, indicating oxidative stress in the cells of astringent seeds. Conversely, numerous elemental metabolites were less accumulated, including amino acids and their derivatives, saccharides and alcohols, organic acids and nucleotides and their derivatives. Meanwhile, most lipid subclasses, mainly associated with energy storage (triglyceride and diglyceride) and cell membrane composition (phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine), also exhibited significant reductions. These results reflected a disruption in the cellular system or the occurrence of cell death, causing a reduction in viable cells within astringent seeds. Furthermore, only one lipid subclass, sphingosine phosphate (SoP), was more accumulated in astringent seeds. Additionally, lower accumulation of indole-3-acetic acid and more accumulation of salicylic acid (SA) were also identified in astringent seeds. Both SA and SoP were closely associated with the promotion of programmed cell death in astringent seeds. Collectively, our study revealed significant abnormal changes in phytohormones, lipids and various metabolites in astringent seeds, allowing us to propose a model for the development of astringent seeds in Chinese fir based on existing research and our findings. This work enriches our comprehension of astringent seeds and presents valuable bioindicators for the identification of astringent seeds. Full article
Show Figures

Figure 1

40 pages, 32390 KiB  
Article
Integrated Transcriptomic and Metabolomics Analyses Reveal Molecular Responses to Cold Stress in Coconut (Cocos nucifera L.) Seedlings
by Lilan Lu, Weibo Yang, Zhiguo Dong, Longxiang Tang, Yingying Liu, Shuyun Xie and Yaodong Yang
Int. J. Mol. Sci. 2023, 24(19), 14563; https://doi.org/10.3390/ijms241914563 - 26 Sep 2023
Cited by 6 | Viewed by 2222
Abstract
Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize [...] Read more.
Coconut is an important tropical and subtropical fruit and oil crop severely affected by cold temperature, limiting its distribution and application. Thus, studying its low-temperature reaction mechanism is required to expand its cultivation range. We used growth morphology and physiological analyses to characterize the response of coconuts to 10, 20, and 30 d of low temperatures, combined with transcriptome and metabolome analysis. Low-temperature treatment significantly reduced the plant height and dry weight of coconut seedlings. The contents of soil and plant analyzer development (SPAD), soluble sugar (SS), soluble protein (SP), proline (Pro), and malondialdehyde (MDA) in leaves were significantly increased, along with the activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), and the endogenous hormones abscisic acid (ABA), auxin (IAA), zeatin (ZR), and gibberellin (GA) contents. A large number of differentially expressed genes (DEGs) (9968) were detected under low-temperature conditions. Most DEGs were involved in mitogen-activated protein kinase (MAPK) signaling pathway-plant, plant hormone signal transduction, plant–pathogen interaction, biosynthesis of amino acids, amino sugar and nucleotide sugar metabolism, carbon metabolism, starch and sucrose metabolism, purine metabolism, and phenylpropanoid biosynthesis pathways. Transcription factors (TFs), including WRKY, AP2/ERF, HSF, bZIP, MYB, and bHLH families, were induced to significantly differentially express under cold stress. In addition, most genes associated with major cold-tolerance pathways, such as the ICE-CBF-COR, MAPK signaling, and endogenous hormones and their signaling pathways, were significantly up-regulated. Under low temperatures, a total of 205 differentially accumulated metabolites (DAMs) were enriched; 206 DAMs were in positive-ion mode and 97 in negative-ion mode, mainly including phenylpropanoids and polyketides, lipids and lipid-like molecules, benzenoids, organoheterocyclic compounds, organic oxygen compounds, organic acids and derivatives, nucleosides, nucleotides, and analogues. Comprehensive metabolome and transcriptome analysis revealed that the related genes and metabolites were mainly enriched in amino acid, flavonoid, carbohydrate, lipid, and nucleotide metabolism pathways under cold stress. Together, the results of this study provide important insights into the response of coconuts to cold stress, which will reveal the underlying molecular mechanisms and help in coconut screening and breeding. Full article
Show Figures

Figure 1

23 pages, 20461 KiB  
Article
AP2/EREBP Pathway Plays an Important Role in Chaling Wild Rice Tolerance to Cold Stress
by Songjin Yang, Jingming Zhou, Yaqi Li, Jiacheng Wu, Chuan Ma, Yulin Chen, Xingzhuo Sun, Lingli Wu, Xin Liang, Qiuping Fu, Zhengjun Xu, Lihua Li, Zhengjian Huang, Jianqing Zhu, Xiaomei Jia, Xiaoying Ye and Rongjun Chen
Int. J. Mol. Sci. 2023, 24(19), 14441; https://doi.org/10.3390/ijms241914441 - 22 Sep 2023
Cited by 2 | Viewed by 1522
Abstract
Cold stress is the main factor limiting rice production and distribution. Chaling wild rice can survive in cold winters. AP2/EREBP is a known transcription factor family associated with abiotic stress. We identified the members of the AP2/EREBP transcription factor family in rice, maize, [...] Read more.
Cold stress is the main factor limiting rice production and distribution. Chaling wild rice can survive in cold winters. AP2/EREBP is a known transcription factor family associated with abiotic stress. We identified the members of the AP2/EREBP transcription factor family in rice, maize, and Arabidopsis, and conducted collinearity analysis and gene family analysis. We used Affymetrix array technology to analyze the expression of AP2/EREBP family genes in Chaling wild rice and cultivated rice cultivar Pei’ai64S, which is sensitive to cold. According to the GeneChip results, the expression levels of AP2/EREBP genes in Chaling wild rice were different from those in Pei’ai64S; and the increase rate of 36 AP2/EREBP genes in Chaling wild rice was higher than that in Pei’ai64S. Meanwhile, the MYC elements in cultivated rice and Chaling wild rice for the Os01g49830, Os03g08470, and Os03g64260 genes had different promoter sequences, resulting in the high expression of these genes in Chaling wild rice under low-temperature conditions. Furthermore, we analyzed the upstream and downstream genes of the AP2/EREBP transcription factor family and studied the conservation of these genes. We found that the upstream transcription factors were more conserved, indicating that these upstream transcription factors may be more important in regulating cold stress. Meanwhile, we found the expression of AP2/EREBP pathway genes was significantly increased in recombinant inbred lines from Nipponbare crossing with Chaling wild rice, These results suggest that the AP2/EREBP signaling pathway plays an important role in Chaling wild rice tolerance to cold stress. Full article
Show Figures

Figure 1

12 pages, 9414 KiB  
Article
Characterization of Dof Transcription Factors and the Heat-Tolerant Function of PeDof-11 in Passion Fruit (Passiflora edulis)
by Ge Chen, Yi Xu, Jie Gui, Yongcai Huang, Funing Ma, Wenhua Wu, Te Han, Wenwu Qiu, Liu Yang and Shun Song
Int. J. Mol. Sci. 2023, 24(15), 12091; https://doi.org/10.3390/ijms241512091 - 28 Jul 2023
Cited by 3 | Viewed by 1219
Abstract
Abiotic stress is the focus of passion fruit research since it harms the industry, in which high temperature is an important influencing factor. Dof transcription factors (TFs) act as essential regulators in stress conditions. TFs can protect against abiotic stress via a variety [...] Read more.
Abiotic stress is the focus of passion fruit research since it harms the industry, in which high temperature is an important influencing factor. Dof transcription factors (TFs) act as essential regulators in stress conditions. TFs can protect against abiotic stress via a variety of biological processes. There is yet to be published a systematic study of the Dof (PeDof) family of passion fruit. This study discovered 13 PeDof family members by using high-quality genomes, and the members of this characterization were identified by bioinformatics. Transcriptome sequencing and qRT-PCR were used to analyze the induced expression of PeDofs under high-temperature stress during three periods, in which PeDof-11 was significantly induced with high expression. PeDof-11 was then chosen and converted into yeast, tobacco, and Arabidopsis, with the findings demonstrating that PeDof-11 could significantly respond to high-temperature stress. This research lays the groundwork for a better understanding of PeDof gene regulation under high-temperature stress. Full article
Show Figures

Figure 1

Review

Jump to: Research

25 pages, 2129 KiB  
Review
Protein Disorder in Plant Stress Adaptation: From Late Embryogenesis Abundant to Other Intrinsically Disordered Proteins
by An-Shan Hsiao
Int. J. Mol. Sci. 2024, 25(2), 1178; https://doi.org/10.3390/ijms25021178 - 18 Jan 2024
Cited by 1 | Viewed by 2631
Abstract
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The [...] Read more.
Global climate change has caused severe abiotic and biotic stresses, affecting plant growth and food security. The mechanical understanding of plant stress responses is critical for achieving sustainable agriculture. Intrinsically disordered proteins (IDPs) are a group of proteins without unique three-dimensional structures. The environmental sensitivity and structural flexibility of IDPs contribute to the growth and developmental plasticity for sessile plants to deal with environmental challenges. This article discusses the roles of various disordered proteins in plant stress tolerance and resistance, describes the current mechanistic insights into unstructured proteins such as the disorder-to-order transition for adopting secondary structures to interact with specific partners (i.e., cellular membranes, membrane proteins, metal ions, and DNA), and elucidates the roles of liquid–liquid phase separation driven by protein disorder in stress responses. By comparing IDP studies in animal systems, this article provides conceptual principles of plant protein disorder in stress adaptation, reveals the current research gaps, and advises on the future research direction. The highlighting of relevant unanswered questions in plant protein disorder research aims to encourage more studies on these emerging topics to understand the mechanisms of action behind their stress resistance phenotypes. Full article
Show Figures

Figure 1

22 pages, 1573 KiB  
Review
Understanding AP2/ERF Transcription Factor Responses and Tolerance to Various Abiotic Stresses in Plants: A Comprehensive Review
by Ziming Ma, Lanjuan Hu and Wenzhu Jiang
Int. J. Mol. Sci. 2024, 25(2), 893; https://doi.org/10.3390/ijms25020893 - 11 Jan 2024
Cited by 11 | Viewed by 3402
Abstract
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to [...] Read more.
Abiotic stress is an adverse environmental factor that severely affects plant growth and development, and plants have developed complex regulatory mechanisms to adapt to these unfavourable conditions through long-term evolution. In recent years, many transcription factor families of genes have been identified to regulate the ability of plants to respond to abiotic stresses. Among them, the AP2/ERF (APETALA2/ethylene responsive factor) family is a large class of plant-specific proteins that regulate plant response to abiotic stresses and can also play a role in regulating plant growth and development. This paper reviews the structural features and classification of AP2/ERF transcription factors that are involved in transcriptional regulation, reciprocal proteins, downstream genes, and hormone-dependent signalling and hormone-independent signalling pathways in response to abiotic stress. The AP2/ERF transcription factors can synergise with hormone signalling to form cross-regulatory networks in response to and tolerance of abiotic stresses. Many of the AP2/ERF transcription factors activate the expression of abiotic stress-responsive genes that are dependent or independent of abscisic acid and ethylene in response to abscisic acid and ethylene. In addition, the AP2/ERF transcription factors are involved in gibberellin, auxin, brassinosteroid, and cytokinin-mediated abiotic stress responses. The study of AP2/ERF transcription factors and interacting proteins, as well as the identification of their downstream target genes, can provide us with a more comprehensive understanding of the mechanism of plant action in response to abiotic stress, which can improve plants’ ability to tolerate abiotic stress and provide a more theoretical basis for increasing plant yield under abiotic stress. Full article
Show Figures

Figure 1

Back to TopTop