ijms-logo

Journal Browser

Journal Browser

Molecular Mechanism Discovery of the Bioactive Phytochemicals Against Different Diseases Based on Network Pharmacology and Molecular Docking, 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 15 November 2025 | Viewed by 347

Special Issue Editor


E-Mail Website
Guest Editor
Food Science and Technology Program, Department of Life Sciences, Beijing Normal-Hong Kong Baptist University, Zhuhai 519087, China
Interests: food science; phytochemicals; nutraceuticals; pharmaceuticals; functional foods; molecular nutrition; cell biology
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

With the development of bioinformatics and the research of bioactive phytochemicals, network pharmacology and molecular docking technology have been proposed to study the molecular mechanism of phytochemicals in treating different diseases. In the past two decades, the research purpose of bioactive phytochemicals has shifted from the isolation and validation of their biological activity in vitro and in vivo experiments to the molecular mechanisms of bioactive phytochemicals against various diseases. Previous research studies have found that many plant extracts can potentially treat different diseases. However, the specific bioactive phytochemicals in these extracts and molecular mechanisms are still unknown. Network pharmacology will be an advantageous research strategy in exploring the molecular mechanisms of bioactive phytochemicals in treating various diseases, as it can scientifically analyze molecular mechanisms involved in treating diseases by certain compounds, including protein targets, signaling pathways, biological processes, etc. As network pharmacology can predict the curing targets of disease through big data based on the structural similarity of phytochemicals and the prediction can be verified via molecular docking, the goal of this Special Issue is to collect the latest research findings on the molecular mechanism of bioactive phytochemicals against various diseases through network pharmacology combined with molecular docking.

Prof. Dr. Baojun Xu
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • molecular mechanism
  • phytochemicals
  • network pharmacology
  • molecular docking
  • diseases
  • curing targets
  • signaling pathway
  • biological processes

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

33 pages, 7181 KiB  
Article
In Vitro and In Silico Evaluation of the Potential Anti-Prostate Cancer Activity of Rosmarinus officinalis L. Leaf Extracts
by Samantha Franchette B. Austria, Mon-Juan Lee, Kathlia A. De Castro-Cruz, Pang-Hung Hsu, Cheng-Yang Hsieh, Steven Kuan-Hua Huang and Po-Wei Tsai
Int. J. Mol. Sci. 2025, 26(10), 4650; https://doi.org/10.3390/ijms26104650 - 13 May 2025
Viewed by 226
Abstract
Prostate cancer is one of the most prevalent cancer types diagnosed in older men. Investigations into traditional medicines like Rosmarinus officinalis L., popularly known as rosemary, are a current research interest due to its anti-cancer properties. This study investigates the cytotoxicity of aqueous [...] Read more.
Prostate cancer is one of the most prevalent cancer types diagnosed in older men. Investigations into traditional medicines like Rosmarinus officinalis L., popularly known as rosemary, are a current research interest due to its anti-cancer properties. This study investigates the cytotoxicity of aqueous and ethanolic rosemary leaf extracts in DU-145 cells and the interaction of its active metabolites with key prostate cancer targets using an in silico approach. The water extract of rosemary leaves showed greater cytotoxicity than the ethanol extract, with IC50 values of 1.4140 ± 0.1138 mg/mL and 1.8666 ± 0.0367 mg/mL, respectively; the highest cytotoxic effects for both extracts were observed at 5 mg/mL. These findings indicate significant cytotoxic differences based on concentration and solvent. Network pharmacology identified 37 genes linked to prostate adenocarcinoma, highlighting key genes like EGFR, TP53, ERBB2, IGFBP3, MMP-2, MMP-9, HDAC6, PDGFRB, and FGFR1. Molecular dynamics simulations and binding energy calculations revealed strong interactions between carnosol and rosmarinic acid with these targets, with TP53–carnosol showing the most stable conformation. Rosmarinic acid was identified as a promising candidate due to its low toxicity. This study demonstrates the potential anti-prostate cancer properties of rosemary leaf extracts for further investigations on the development of drugs against prostate cancer. Full article
Show Figures

Figure 1

Back to TopTop