ijms-logo

Journal Browser

Journal Browser

New Advances in Platelet Biology and Functions: 2nd Edition

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Biology".

Deadline for manuscript submissions: closed (20 February 2025) | Viewed by 35448

Special Issue Editor


E-Mail Website
Guest Editor

Special Issue Information

Dear Colleagues,

Platelets, best known as the primary mediators of hemostasis and thrombosis, are a critical component of blood vessel walls. As secretory cells, platelets can release multiple substances from storage granules and membrane vesicles, such as biomediators, influencing both physiological and pathophysiological processes. Conversely, platelets can uptake plasma and cellular components, influencing platelet responsiveness. The analysis of platelet function through the development of powerful imaging techniques, as well as the identification of cells and new molecules that regulate their activation and aggregation within vessels, is instrumental in order to better understand the mechanisms through which platelets protect or damage organisms. These analyses provide useful information for studying the pathogenesis of many disease states.

This Special Issue of the International Journal of Molecular Sciences, titled “New Advances in Platelet Biology and Functions”, will focus on the recent advances in platelet function research, such as platelet action or the release of substances or micro-particles containing platelet miRNA, enzymes, proteins, and small molecules with roles in healthy conditions and as drivers of immunity, inflammation, angiogenesis, and tumor growth. Contributions on these and related topics are welcome, including original research and reviews. We particularly welcome submissions from postdocs, PhD students, and young researchers.

Dr. Isabella Russo
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • platelet microparticles
  • thrombosis
  • inflammation
  • oxidative stress
  • antiplatelet drug
  • signal transduction
  • immunity
  • tumor growth

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (14 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review, Other

18 pages, 4101 KiB  
Article
Storage Temperature Affects Platelet Activation and Degranulation in Response to Stimuli
by Ben Winskel-Wood, Denese C. Marks and Lacey Johnson
Int. J. Mol. Sci. 2025, 26(7), 2944; https://doi.org/10.3390/ijms26072944 - 24 Mar 2025
Viewed by 417
Abstract
The refrigeration (cold storage) of platelet components provides several benefits over room-temperature (RT) storage, extending the shelf-life up to 21 days. However, the effect of storage conditions on platelet activation in response to stimulation remains unclear. A paired study was conducted where buffy-coat [...] Read more.
The refrigeration (cold storage) of platelet components provides several benefits over room-temperature (RT) storage, extending the shelf-life up to 21 days. However, the effect of storage conditions on platelet activation in response to stimulation remains unclear. A paired study was conducted where buffy-coat platelet concentrates were pooled, split, and allocated to RT or cold storage (n = 6 in each group). Platelet samples were taken on days 1, 7, 14, and 21, which were tested without stimulation or following activation with TRAP-6, A23187, lipopolysaccharides, or Histone-H4. Imaging flow cytometry was used to assess the surface characteristics of platelets and extracellular vesicles (EVs). The supernatant concentration of EGF, RANTES, PF4, CD62P, IL-27, CD40L, TNF-α, and OX40L was examined using ELISA. Cold-stored platelets generated a greater proportion of procoagulant platelets and EVs than RT-stored platelets in response to stimulation. The supernatant of cold-stored components contained lower concentrations of soluble factors under basal conditions, suggesting that platelet granules were better retained. Cold-stored platelets released higher concentrations of soluble factors following stimulation with TRAP-6, A23187, or Histone-H4. Only cold-stored platelets responded to lipopolysaccharides. These data demonstrate that cold-stored platelets retain the capacity to respond to stimuli after 21 days of storage, which may facilitate improved functional post-transfusion. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

15 pages, 2951 KiB  
Article
Platelets Modulate Leukocyte Population Composition Within Perivascular Adipose Tissue
by Adam Corken, Tiffany Weinkopff, Elizabeth C. Wahl, James D. Sikes and Keshari M. Thakali
Int. J. Mol. Sci. 2025, 26(4), 1625; https://doi.org/10.3390/ijms26041625 - 14 Feb 2025
Viewed by 538
Abstract
Perivascular adipose tissue (PVAT) regulates vascular tone and is composed of adipocytes and several leukocyte subpopulations. Diet can modify PVAT function, as obesogenic diets cause morphological changes to adipocytes and skew the leukocyte phenotype, leading to PVAT dysregulation and impaired vasoregulation. Of note, [...] Read more.
Perivascular adipose tissue (PVAT) regulates vascular tone and is composed of adipocytes and several leukocyte subpopulations. Diet can modify PVAT function, as obesogenic diets cause morphological changes to adipocytes and skew the leukocyte phenotype, leading to PVAT dysregulation and impaired vasoregulation. Of note, platelets, the clot-forming cells, also modulate many facets of leukocyte activity, such as tissue infiltration and polarity. We aimed to determine whether platelets regulate the leukocyte populations residing within PVAT. Male C57Bl/6J mice were fed a Western diet (30% kcal sucrose, 40% kcal fat, 8.0% sodium) to develop obesogenic conditions for PVAT leukocyte remodeling. Diet was either administered acutely (2 weeks) or extended (8 weeks) to gauge the length of challenge necessary for remodeling. Additionally, platelet depletion allowed for the assessment of platelet relevance in PVAT leukocyte remodeling. Abdominal PVAT (aPVAT) and thoracic PVAT (tPVAT) were then isolated and leukocyte composition evaluated by flow cytometry. Compared to control, Western diet alone did not significantly impact PVAT leukocyte composition for either diet length. Platelet depletion, independent of diet, significantly disrupted PVAT leukocyte content with monocytes/macrophages most impacted. Furthermore, tPVAT appeared more sensitive to platelet depletion than aPVAT, providing novel evidence of platelet regulation of leukocyte composition within PVAT depots. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

16 pages, 19577 KiB  
Article
PCSK9 Expression in Vascular Smooth Muscle Cells: Role of Insulin Resistance and High Glucose
by Cristina Barale, Giulia Tempesta, Elena Melchionda, Alessandro Morotti, Chiara Frascaroli, Alice Costanza Danzero, Saveria Femminò, Claudia Penna and Isabella Russo
Int. J. Mol. Sci. 2025, 26(3), 1003; https://doi.org/10.3390/ijms26031003 - 24 Jan 2025
Viewed by 937
Abstract
Beyond the regulation of cholesterol metabolism, a number of extrahepatic functions of proprotein convertase subtilisin/kexin type 9 (PCSK9) have been increasingly identified. The main purpose of this study was to verify whether PCSK9 expression in vascular smooth muscle cells (VSMC) is influenced by [...] Read more.
Beyond the regulation of cholesterol metabolism, a number of extrahepatic functions of proprotein convertase subtilisin/kexin type 9 (PCSK9) have been increasingly identified. The main purpose of this study was to verify whether PCSK9 expression in vascular smooth muscle cells (VSMC) is influenced by insulin resistance and high glucose (HG). In cultured rat aortic VSMC from lean insulin-sensitive Zucker rats (LZRs) and obese insulin-resistant Zucker rats (OZRs), a classical animal model of insulin resistance, we evaluated PCSK9 expression with or without the monoclonal antibodies against PCSK9 Alirocumab and Evolocumab or the synthetic PCSK9-binding peptide PEP 2-8. Effects and molecular mechanisms underlying altered PCSK9 expression were evaluated by proliferation and migration assay, reactive oxygen species (ROS) production, and involvement of PKC, NADPH-oxidase, MAPK/ERK-1/2 pathway activation. As a result, we found that, in comparison with LZR, VSMC from OZR showed basal PCSK9 overexpression mitigated by Alirocumab, Evolocumab, PEP 2-8, and the inhibitors of PKC, NADPH-oxidase, and MAPK. The finding of PCSK9 upregulation in VSMC from OZR paralleled with increased ROS production, proliferation, and migration. HG increased PCSK9 expression in VSMC from LZR, but not in OZR, via oxidative stress and with effects reduced by PCSK9 inhibitors. These findings suggest that a dysregulation of PCSK9 in VSMC could be involved in vascular damage in metabolic disorders, such as obesity and diabetes. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

28 pages, 9412 KiB  
Article
Deciphering Abnormal Platelet Subpopulations in COVID-19, Sepsis and Systemic Lupus Erythematosus through Machine Learning and Single-Cell Transcriptomics
by Xinru Qiu, Meera G. Nair, Lukasz Jaroszewski and Adam Godzik
Int. J. Mol. Sci. 2024, 25(11), 5941; https://doi.org/10.3390/ijms25115941 - 29 May 2024
Cited by 7 | Viewed by 2310
Abstract
This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated [...] Read more.
This study focuses on understanding the transcriptional heterogeneity of activated platelets and its impact on diseases such as sepsis, COVID-19, and systemic lupus erythematosus (SLE). Recognizing the limited knowledge in this area, our research aims to dissect the complex transcriptional profiles of activated platelets to aid in developing targeted therapies for abnormal and pathogenic platelet subtypes. We analyzed single-cell transcriptional profiles from 47,977 platelets derived from 413 samples of patients with these diseases, utilizing Deep Neural Network (DNN) and eXtreme Gradient Boosting (XGB) to distinguish transcriptomic signatures predictive of fatal or survival outcomes. Our approach included source data annotations and platelet markers, along with SingleR and Seurat for comprehensive profiling. Additionally, we employed Uniform Manifold Approximation and Projection (UMAP) for effective dimensionality reduction and visualization, aiding in the identification of various platelet subtypes and their relation to disease severity and patient outcomes. Our results highlighted distinct platelet subpopulations that correlate with disease severity, revealing that changes in platelet transcription patterns can intensify endotheliopathy, increasing the risk of coagulation in fatal cases. Moreover, these changes may impact lymphocyte function, indicating a more extensive role for platelets in inflammatory and immune responses. This study identifies crucial biomarkers of platelet heterogeneity in serious health conditions, paving the way for innovative therapeutic approaches targeting platelet activation, which could improve patient outcomes in diseases characterized by altered platelet function. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Graphical abstract

15 pages, 1948 KiB  
Article
Association between Platelet-Derived Growth Factor Receptor Alpha Gene Polymorphisms and Platelet-Rich Plasma’s Efficiency in Treating Lateral Elbow Tendinopathy—A Prospective Cohort Study
by Alicja Jarosz, Anna Balcerzyk-Matić, Joanna Iwanicka, Tomasz Iwanicki, Tomasz Nowak, Karol Szyluk, Marcin Kalita, Sylwia Górczyńska-Kosiorz, Wojciech Kania and Paweł Niemiec
Int. J. Mol. Sci. 2024, 25(8), 4266; https://doi.org/10.3390/ijms25084266 - 12 Apr 2024
Cited by 4 | Viewed by 1386
Abstract
Individual differences in the response to platelet-rich plasma (PRP) therapy can be observed among patients. The genetic background may be the cause of this variability. The current study focused on the impact of genetic variants on the effectiveness of PRP. The aim of [...] Read more.
Individual differences in the response to platelet-rich plasma (PRP) therapy can be observed among patients. The genetic background may be the cause of this variability. The current study focused on the impact of genetic variants on the effectiveness of PRP. The aim of the present study was to analyze the impact of single nucleotide polymorphisms (SNP) of the platelet-derived growth factor receptor alpha (PDGFRA) gene on the effectiveness of treating lateral elbow tendinopathy (LET) with PRP. The treatment’s efficacy was analyzed over time (2, 4, 8, 12, 24, 52 and 104 weeks after the PRP injection) on 107 patients using patient-reported outcome measures (PROM) and achievement of a minimal clinically important difference (MCID). Four SNPs of the PDGFRA gene (rs7668190, rs6554164, rs869978 and rs1316926) were genotyped using the TaqMan assay method. Patients with the AA genotypes of the rs7668190 and the rs1316926 polymorphisms, as well as carriers of the T allele of rs6554164 showed greater effectiveness of PRP therapy than carriers of other genotypes. Moreover, the studied SNPs influenced the platelets’ parameters both in whole blood and in PRP. These results showed that PDGFRA gene polymorphisms affect the effectiveness of PRP treatment. Genotyping the rs6554164 and the rs1316926 SNPs may be considered for use in individualized patient selection for PRP therapy. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research, Other

25 pages, 828 KiB  
Review
The Role of Platelet Dysfunctions in the Pathogenesis of the Hemostatic-Coagulant System Imbalances
by Oana-Viola Badulescu, Manuela Ciocoiu, Maria Cristina Vladeanu, Bogdan Huzum, Carmen Elena Plesoianu, Dan Iliescu-Halitchi, Andrei Bojan, Codruta Iliescu-Halitchi and Iris Bararu Bojan
Int. J. Mol. Sci. 2025, 26(6), 2756; https://doi.org/10.3390/ijms26062756 - 19 Mar 2025
Viewed by 623
Abstract
Platelet dysfunction plays a critical role in the pathogenesis of various disorders affecting the hemostatic-coagulant system. This review aims to explore the mechanisms by which platelet dysfunctions contribute to the disruption of hemostasis, leading to an increased risk of both thrombosis and bleeding. [...] Read more.
Platelet dysfunction plays a critical role in the pathogenesis of various disorders affecting the hemostatic-coagulant system. This review aims to explore the mechanisms by which platelet dysfunctions contribute to the disruption of hemostasis, leading to an increased risk of both thrombosis and bleeding. Platelets, traditionally known for their role in clot formation, can exhibit altered functionality under pathological conditions such as cardiovascular diseases, metabolic disorders, and autoimmune diseases, impacting their interaction with coagulation factors and vascular endothelium. The review discusses the molecular and cellular mechanisms underlying platelet dysfunction, including aberrations in platelet activation, aggregation, and secretion. It also highlights the interplay between platelets and other components of the coagulation cascade, such as fibrinogen and clotting factors, in maintaining vascular integrity. Moreover, the review examines clinical implications, including how platelet dysfunction can be a contributing factor in conditions like deep vein thrombosis, stroke, and disseminated intravascular coagulation (DIC). Finally, current therapeutic approaches targeting platelet dysfunctions, including antiplatelet agents and emerging therapies, are reviewed to provide insights into potential strategies for managing fluid-coagulation system imbalances. This review underscores the importance of a comprehensive understanding of platelet dysfunction to improve diagnosis and treatment of hemostatic disorders. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

23 pages, 475 KiB  
Review
Antibiotic-Loaded Platelet-Rich Fibrin (AL-PRF) as a New Carrier for Antimicrobials: A Systematic Review of In Vitro Studies
by Wojciech Niemczyk, Jacek Żurek, Stanisław Niemczyk, Małgorzata Kępa, Natalia Zięba, Maciej Misiołek and Rafał Wiench
Int. J. Mol. Sci. 2025, 26(5), 2140; https://doi.org/10.3390/ijms26052140 - 27 Feb 2025
Cited by 3 | Viewed by 886
Abstract
Platelet-rich fibrin (PRF) has emerged as a promising scaffold for drug delivery, particularly in the context of antimicrobial therapies. This systematic review evaluates the incorporation of antibiotics into PRF to determine its efficacy as a localized antimicrobial delivery system compared to plain PRF [...] Read more.
Platelet-rich fibrin (PRF) has emerged as a promising scaffold for drug delivery, particularly in the context of antimicrobial therapies. This systematic review evaluates the incorporation of antibiotics into PRF to determine its efficacy as a localized antimicrobial delivery system compared to plain PRF without antibiotics. A systematic review was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, including 13 in vitro studies with a moderate risk of bias. Antibiotics were incorporated into PRF using different methodologies, including systemic administration before blood collection, addition to blood before centrifugation, and injection into formed PRF matrices. Outcomes were analyzed regarding antibacterial efficacy, structural integrity of PRF, and release kinetics. Antibiotic-enhanced PRF demonstrated significant antibacterial activity against various bacterial strains. The efficacy of the enhanced PRF was dependent on the type of antibiotic, its concentration, and incorporation method. Encapsulation approaches facilitated a sustained antibiotic release, while higher antibiotic concentrations occasionally disrupted PRF integrity. Systemic administration of antibiotics before blood collection enriches PRF effectively, producing significant inhibition zones. The antibacterial effects of PRF outperformed alternative carriers, such as collagen sponges. Antibiotic-loaded PRF is a potent tool for localized antimicrobial delivery, with promising applications in clinical settings. Further research is needed to standardize preparation protocols and explore the impact of different antibiotic delivery methods on PRF’s regenerative properties. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

25 pages, 1762 KiB  
Review
Complex Pattern of Platelet Activation/Reactivity After SARS-CoV-2 Infection
by Boguslawa Luzak, Jacek Golanski and Marcin Rozalski
Int. J. Mol. Sci. 2025, 26(1), 49; https://doi.org/10.3390/ijms26010049 - 24 Dec 2024
Cited by 1 | Viewed by 1281
Abstract
COVID-19 and post-COVID (long COVID) are associated with thromboembolic complications; however, it is still not clear whether platelets play a leading role in this phenomenon. The platelet hyperreactivity could result from the direct interaction between platelets and viral elements or the response to [...] Read more.
COVID-19 and post-COVID (long COVID) are associated with thromboembolic complications; however, it is still not clear whether platelets play a leading role in this phenomenon. The platelet hyperreactivity could result from the direct interaction between platelets and viral elements or the response to inflammatory and prothrombotic factors released from blood and vessel cells following infection. The existing literature does not provide clear-cut answers, as the results determining platelet status vary according to methodology. Elevated levels of soluble markers of platelet activation (P selectin, PF4), increased platelet aggregates, and platelet-derived microparticles suggest the activation of platelets circulating in the bloodstream of COVID-19 patients. Similarly, platelets isolated from COVID-19 patients demonstrate increased reactivity in response to collagen, thrombin, and ADP. By contrast, an analysis of whole blood from COVID-19 patients indicates the reduced activation of the fibrinogen receptor. Similarly, some in vitro studies report potential targets for SARS-CoV-2 in platelets, whereas others do not indicate any direct effect of the virus on platelets. The aim of this work is to review and evaluate the reliability of the methodology for testing platelet function after contact with SARS-CoV-2. Despite the diversity of methods yielding varying results and the influence of plasma components or blood cells, it can be concluded that platelets play an important role in the development of thrombotic complications after exposure to SARS-CoV-2. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

14 pages, 2632 KiB  
Review
Role of Platelet-Activating Factor in the Pathogenesis of Chronic Spontaneous Urticaria
by Bo Youn Choi and Young-Min Ye
Int. J. Mol. Sci. 2024, 25(22), 12143; https://doi.org/10.3390/ijms252212143 - 12 Nov 2024
Cited by 1 | Viewed by 1975
Abstract
Chronic spontaneous urticaria (CSU) is a debilitating condition characterized by mast cell activation. Platelet-activating factor (PAF) is produced by various immune cells, including mast cells, basophils, lymphocytes, and eosinophils, which play crucial roles in CSU pathogenesis. It induces mast cell degranulation, increases vascular [...] Read more.
Chronic spontaneous urticaria (CSU) is a debilitating condition characterized by mast cell activation. Platelet-activating factor (PAF) is produced by various immune cells, including mast cells, basophils, lymphocytes, and eosinophils, which play crucial roles in CSU pathogenesis. It induces mast cell degranulation, increases vascular permeability, and promotes the chemotaxis of inflammatory cells. These effects result in the release of inflammatory mediators, the development of edema, and the persistence of inflammation, which are key features of CSU. Notably, elevated PAF levels have been linked to heightened disease activity and resistance to antihistamine treatment in CSU patients. Despite these findings, the precise role of PAF in CSU pathogenesis remains unclear. Rupatadine, an antihistamine, and heat shock protein 10, a natural anti-inflammatory peptide that selectively inhibits PAF-induced mast cell degranulation, have demonstrated anti-PAF activity. Furthermore, with the molecular structure of the PAF receptor now identified, several experimental PAF receptor antagonists have been synthesized. However, there remains a significant need for the development of therapeutic options targeting PAF in CSU management. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

15 pages, 649 KiB  
Review
Applications of Platelet Concentrates (PCs) in Regenerative Onco-Urology: A Systematic Review of Literature
by Andrea Gottardo, Gabriele Tulone, Nicola Pavan, Fabio Fulfaro, Valerio Gristina, Tancredi Didier Bazan Russo, Ornella Prestifilippo, Francesco Claps, Lorena Incorvaia, Antonio Galvano, Antonio Russo and Alchiede Simonato
Int. J. Mol. Sci. 2024, 25(19), 10683; https://doi.org/10.3390/ijms251910683 - 4 Oct 2024
Viewed by 1526
Abstract
Objective: To assess the effectiveness of Platelet Concentrates (PCs) in the contest of Hemorrhagic, Actinic, and Radiation Cystitis, plus Urethral Obstruction or Stenosis. Eligibility criteria: Open article in English or Italian regarding in situ applications of PCs for the selected pathologies. [...] Read more.
Objective: To assess the effectiveness of Platelet Concentrates (PCs) in the contest of Hemorrhagic, Actinic, and Radiation Cystitis, plus Urethral Obstruction or Stenosis. Eligibility criteria: Open article in English or Italian regarding in situ applications of PCs for the selected pathologies. Information sources: MEDLINE, Cochrane Library, and ELSEVIER. Risk of bias: High (and discussed). Methods for synthesis of results: Selection of relevant contents, resumed by digital tools, checked by authors and used throughout the manuscript. Included studies: 13 screened articles + 7 personal sources + 37 “extra” articles. Synthesis of results: Pre-clinical and clinical studies demonstrated substantial symptom relief, mucosal restoration, and improved growth factor levels, reducing recurrence rates and complications. However, preparation protocols and results varied among studies. Limitations of evidence: Frequent low-quality studies with mall sample size, plus heterogeneous experimental setups and nomenclature/preparations. Interpretation: PCs demonstrate promise due to their bioactive components, enhancing tissue repair and reducing inflammation with no significant adverse events. Despite positive outcomes in pre-clinical and clinical studies, variability in preparation protocols and small sample sizes, together with inconsistent results, highlight the need for high-quality research to validate PCs’ clinical efficacy and cost-effectiveness. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Graphical abstract

17 pages, 947 KiB  
Review
The Effects of Caffeine on Blood Platelets and the Cardiovascular System through Adenosine Receptors
by Kinga Marcinek, Boguslawa Luzak and Marcin Rozalski
Int. J. Mol. Sci. 2024, 25(16), 8905; https://doi.org/10.3390/ijms25168905 - 15 Aug 2024
Cited by 4 | Viewed by 11706
Abstract
Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect [...] Read more.
Caffeine is the most popular and widely consumed behaviourally active substance in the world. This review describes the influence of caffeine on the cardiovascular system, with a special focus on blood platelets. For many years, caffeine was thought to have a negative effect on the cardiovascular system mainly due to increasing blood pressure. However, more recent data suggest that habitual caffeine consumption may reduce the risk of cardiovascular disease and hypertension. This could be a significant finding as cardiovascular disease is the leading cause of death worldwide. Caffeine is known to inhibit A1 adenosine receptors, through which it is believed to modulate inter alia coronary blood flow, total peripheral resistance, diuresis, and heart rate. It has been shown that coffee possesses antiplatelet activity, but depending on the dose and the term of its use, caffeine may stimulate or inhibit platelet reactivity. Also, chronic exposure to caffeine may sensitize or upregulate the adenosine receptors in platelets causing increased cAMP accumulation and anti-aggregatory effects and decrease calcium levels elicited by AR agonists. The search for new, selective, and safe AR agonists is one of the new strategies for improving antiplatelet therapy involving targeting multiple pathways of platelet activation. Therefore, this review examines the AR-dependent impact of caffeine on blood platelets in the presence of adenosine receptor agonists. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

32 pages, 2465 KiB  
Review
Hallmarks for Thrombotic and Hemorrhagic Risks in Chronic Kidney Disease Patients
by Zeeba Saeed, Vittorio Sirolli, Mario Bonomini, Sabina Gallina and Giulia Renda
Int. J. Mol. Sci. 2024, 25(16), 8705; https://doi.org/10.3390/ijms25168705 - 9 Aug 2024
Cited by 2 | Viewed by 3302
Abstract
Chronic kidney disease (CKD) is a global health issue causing a significant health burden. CKD patients develop thrombotic and hemorrhagic complications, and cardiovascular diseases are associated with increased hospitalization and mortality in this population. The hemostatic alterations are multifactorial in these patients; therefore, [...] Read more.
Chronic kidney disease (CKD) is a global health issue causing a significant health burden. CKD patients develop thrombotic and hemorrhagic complications, and cardiovascular diseases are associated with increased hospitalization and mortality in this population. The hemostatic alterations are multifactorial in these patients; therefore, the results of different studies are varying and controversial. Endothelial and platelet dysfunction, coagulation abnormalities, comorbidities, and hemoincompatibility of the dialysis membranes are major contributors of hypo- and hypercoagulability in CKD patients. Due to the tendency of CKD patients to exhibit a prothrombotic state and bleeding risk, they require personalized clinical assessment to understand the impact of antithrombotic therapy. The evidence of efficacy and safety of antiplatelet and anticoagulant treatments is limited for end-stage renal disease patients due to their exclusion from major randomized clinical trials. Moreover, designing hemocompatible dialyzer membranes could be a suitable approach to reduce platelet activation, coagulopathy, and thrombus formation. This review discusses the molecular mechanisms underlying thrombotic and hemorrhagic risk in patients with CKD, leading to cardiovascular complications in these patients, as well as the evidence and guidance for promising approaches to optimal therapeutic management. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

24 pages, 1585 KiB  
Review
Platelet Storage—Problems, Improvements, and New Perspectives
by Natalia Trochanowska-Pauk, Tomasz Walski, Raghvendra Bohara, Julia Mikolas and Krystian Kubica
Int. J. Mol. Sci. 2024, 25(14), 7779; https://doi.org/10.3390/ijms25147779 - 16 Jul 2024
Cited by 4 | Viewed by 4291
Abstract
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited [...] Read more.
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

Other

Jump to: Research, Review

20 pages, 2977 KiB  
Case Report
Heyde Syndrome Unveiled: A Case Report with Current Literature Review and Molecular Insights
by Mladen Maksić, Irfan Corović, Isidora Stanisavljević, Dušan Radojević, Tijana Veljković, Željko Todorović, Marina Jovanović, Nataša Zdravković, Bojan Stojanović, Bojana Simović Marković and Ivan Jovanović
Int. J. Mol. Sci. 2024, 25(20), 11041; https://doi.org/10.3390/ijms252011041 - 14 Oct 2024
Cited by 2 | Viewed by 2036
Abstract
Heyde syndrome, marked by aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome, is often underreported. Shear stress from a narrowed aortic valve degrades von Willebrand factor multimers, leading to angiodysplasia formation and von Willebrand factor deficiency. This case report aims [...] Read more.
Heyde syndrome, marked by aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome, is often underreported. Shear stress from a narrowed aortic valve degrades von Willebrand factor multimers, leading to angiodysplasia formation and von Willebrand factor deficiency. This case report aims to raise clinician awareness of Heyde syndrome, its complexity, and the need for a multidisciplinary approach. We present a 75-year-old man with aortic stenosis, gastrointestinal bleeding from angiodysplasia, and acquired von Willebrand syndrome type 2A. The patient was successfully treated with argon plasma coagulation and blood transfusions. He declined further treatment for aortic stenosis but was in good overall health with improved laboratory results during follow-up. Additionally, we provide a comprehensive review of the molecular mechanisms involved in the development of this syndrome, discuss current diagnostic and treatment approaches, and offer future perspectives for further research on this topic. Full article
(This article belongs to the Special Issue New Advances in Platelet Biology and Functions: 2nd Edition)
Show Figures

Figure 1

Back to TopTop