ijms-logo

Journal Browser

Journal Browser

Molecular Mechanisms of Heart Failure: Insights and Therapeutic Strategies

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Pathology, Diagnostics, and Therapeutics".

Deadline for manuscript submissions: 20 July 2025 | Viewed by 1634

Special Issue Editors


E-Mail Website
Guest Editor
Department of Molecular Medicine, Università degli Studi di Pavia, Pavia, Italy
Interests: heart failure

E-Mail Website
Guest Editor
Department of Clinical Laboratory, Centro Diagnostico Italiano, Milan, Italy
Interests: gut and brain heart axes

Special Issue Information

Dear Colleagues,

Toward the end of the last century, the availability of ACE inhibitors and the novel understanding of the beta-blockers use, shifting from contraindicated to first-line therapy in heart failure, have completely shifted the medical goals of pharmacological therapy from disease symptom control to disease cure. This conceptual shift has finally highlighted the critical role of the autonomic nervous system in HF development and lethal progression. However, the neurohumoral treatment has, for the first time, affected HF prognosis by dramatically decreasing its related morbidity and mortality. The new millennium has brought focus on novel targets like BNP and neural stimulation. In more recent times, the long-lasting appreciation of HF as an inflammatory process has found novel lines of understanding, leading to new therapeutical approaches built on the molecular approaches. Among these, the brain–gut interaction is generating a growing bulk of evidence. Specifically, the evidence that gut microbiota products, e.g., TMAO, can not only affect brain function but also activate lethal inflammatory processes in the heart, thus favoring cardiac remodeling and determining its progression toward overt HF, deserves specific attention. Based on the above facts, this Special Issue is indeed dedicated to address this matter by distributing information generated from novel or resumed research about heart failure and its molecular pathologies and therapeutic strategies.

Dr. Emilio Vanoli
Dr. Eugenio Caradonna
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • heart failure
  • autonomic nervous system
  • brain–gut interaction
  • gut microbiota
  • neurohumoral treatment
  • cardiac remodeling
  • inflammation

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

25 pages, 2703 KiB  
Review
Role of Gut Microbial Metabolites in Ischemic and Non-Ischemic Heart Failure
by Mohammad Reza Hatamnejad, Lejla Medzikovic, Ateyeh Dehghanitafti, Bita Rahman, Arjun Vadgama and Mansoureh Eghbali
Int. J. Mol. Sci. 2025, 26(5), 2242; https://doi.org/10.3390/ijms26052242 - 2 Mar 2025
Viewed by 1430
Abstract
The effect of the gut microbiota extends beyond their habitant place from the gastrointestinal tract to distant organs, including the cardiovascular system. Research interest in the relationship between the heart and the gut microbiota has recently been emerging. The gut microbiota secretes metabolites, [...] Read more.
The effect of the gut microbiota extends beyond their habitant place from the gastrointestinal tract to distant organs, including the cardiovascular system. Research interest in the relationship between the heart and the gut microbiota has recently been emerging. The gut microbiota secretes metabolites, including Trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), bile acids (BAs), indole propionic acid (IPA), hydrogen sulfide (H2S), and phenylacetylglutamine (PAGln). In this review, we explore the accumulating evidence on the role of these secreted microbiota metabolites in the pathophysiology of ischemic and non-ischemic heart failure (HF) by summarizing current knowledge from clinical studies and experimental models. Elevated TMAO contributes to non-ischemic HF through TGF-ß/Smad signaling-mediated myocardial hypertrophy and fibrosis, impairments of mitochondrial energy production, DNA methylation pattern change, and intracellular calcium transport. Also, high-level TMAO can promote ischemic HF via inflammation, histone methylation-mediated vascular fibrosis, platelet hyperactivity, and thrombosis, as well as cholesterol accumulation and the activation of MAPK signaling. Reduced SCFAs upregulate Egr-1 protein, T-cell myocardial infiltration, and HDAC 5 and 6 activities, leading to non-ischemic HF, while reactive oxygen species production and the hyperactivation of caveolin-ACE axis result in ischemic HF. An altered BAs level worsens contractility, opens mitochondrial permeability transition pores inducing apoptosis, and enhances cholesterol accumulation, eventually exacerbating ischemic and non-ischemic HF. IPA, through the inhibition of nicotinamide N-methyl transferase expression and increased nicotinamide, NAD+/NADH, and SIRT3 levels, can ameliorate non-ischemic HF; meanwhile, H2S by suppressing Nox4 expression and mitochondrial ROS production by stimulating the PI3K/AKT pathway can also protect against non-ischemic HF. Furthermore, PAGln can affect sarcomere shortening ability and myocyte contraction. This emerging field of research opens new avenues for HF therapies by restoring gut microbiota through dietary interventions, prebiotics, probiotics, or fecal microbiota transplantation and as such normalizing circulating levels of TMAO, SCFA, BAs, IPA, H2S, and PAGln. Full article
Show Figures

Figure 1

Back to TopTop