ijms-logo

Journal Browser

Journal Browser

Plant-Derived Bioactive Compounds for Pharmacological Applications

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Bioactives and Nutraceuticals".

Deadline for manuscript submissions: 20 November 2025 | Viewed by 8667

Special Issue Editors

Special Issue Information

Dear Colleagues,

Plant-derived bioactive compounds are integral to advancing human health, revealing their wide-ranging biological properties, including antioxidant, antimicrobial, anti-inflammatory, anticarcinogenic, and neuroprotective effects. These compounds hold significant potential in preventing and managing non-communicable diseases such as cardiovascular disorders, autoimmune conditions, cancer, metabolic syndromes, and neurodegenerative diseases. The exploration and application of these natural molecules continue to be central pursuits across various scientific disciplines, including phytochemistry, biochemistry, pharmacology, molecular biology, biotechnology, medicinal chemistry, and pharmaceutical innovation.

This Special Issue seeks contributions highlighting recent advancements in the discovery, characterization, and application of plant-based bioactive compounds. Topics of interest include high-throughput screening techniques, novel extraction and isolation methods, structural analysis, and in vivo or in vitro evaluations of pharmacological activities. We also encourage studies leveraging state-of-the-art technologies, such as CRISPR, genome editing, bioprocess engineering, and bioreactor-based production, to optimize the identification, synthesis, and therapeutic application of these bioactive molecules.

We look forward to your valuable submissions.

Dr. Ilian Badjakov
Dr. Ivayla Dincheva
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • plant-derived bioactive compounds
  • pharmacological applications
  • antioxidant activity
  • anti-inflammatory agents
  • antimicrobial properties
  • neuroprotective effects
  • drug discovery
  • high-throughput screening
  • extraction and isolation techniques
  • structural characterization
  • CRISPR technology
  • genome editing
  • bioprocess engineering
  • bioreactor production
  • therapeutic potential
  • metabolite profiling

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

18 pages, 1370 KB  
Article
Screening of Basidiomycete Strains Capable of Synthesizing Antibacterial and Antifungal Metabolites
by Valeria Lysakova, Aleksey Streletskiy, Olga Sineva, Elena Isakova and Larissa Krasnopolskaya
Int. J. Mol. Sci. 2025, 26(19), 9802; https://doi.org/10.3390/ijms26199802 - 8 Oct 2025
Viewed by 414
Abstract
Recently, the search for new antimicrobial compounds, including the secondary metabolites of basidiomycetes, has become increasingly important. Representatives of this division of higher fungi have high biosynthetic abilities, which contributes to their use as producers. In this work, extracts of culture liquids and [...] Read more.
Recently, the search for new antimicrobial compounds, including the secondary metabolites of basidiomycetes, has become increasingly important. Representatives of this division of higher fungi have high biosynthetic abilities, which contributes to their use as producers. In this work, extracts of culture liquids and submerged mycelia from 18 strains representing three different orders of basidiomycetes were studied. For this purpose, the submerged cultivation of strains, extraction of biological material, and evaluation of the extract’s antimicrobial activity using the agar well diffusion method were carried out. The minimum inhibitory concentration was determined for extracts with strong activity. The most promising ones were analyzed using HPLC-MS. As a result, it was found that 16 strains contained antimicrobial metabolites. Thus, the strains selected for further work were Hericium corraloides 4, which showed not only the antibacterial but also antifungal activity of cultural liquid and submerged mycelia extracts, and Fomitopsis betulina 3, Fomitopsis pinicola 2, Hericium erinaceus 1, and Laetiporus sulphureus 4, whose cultural liquid extracts exhibited high antibacterial activity against Gram-positive and Gram-negative test cultures. For these strains, metabolic profiles were obtained using the method HPLC-MS. Using this method, two metabolites were preliminary identified: hericerin in H. erinaceus 1 and sulfureuine H in L. sulphureus 4. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

20 pages, 2887 KB  
Article
Jamamina: A Green Nanostructured Lipid Carrier with NaDES and Curcumin for Redox Modulation and Inflammatory Disorders
by Luís Felipe Romera, Luísa Schuh, Caio Leal, Leonardo Froes de Azevedo Chang, Brenda Martins dos Santos, Pedro Henrique Almeida de Jesus da Rocha, Marina Arantes Radicchi, Eliana Fortes Gris, Leila Falcao, Sônia Nair Báo and Victor Carlos Mello
Int. J. Mol. Sci. 2025, 26(17), 8373; https://doi.org/10.3390/ijms26178373 - 28 Aug 2025
Viewed by 3198
Abstract
Plant-derived compounds offer immense therapeutic potential, yet many suffer from limited solubility, instability, and poor bioavailability, restricting their clinical application. Curcumin, a polyphenol extracted from Curcuma longa, is one such molecule, with proven antioxidant and anti-inflammatory properties. To overcome its pharmacokinetic limitations, [...] Read more.
Plant-derived compounds offer immense therapeutic potential, yet many suffer from limited solubility, instability, and poor bioavailability, restricting their clinical application. Curcumin, a polyphenol extracted from Curcuma longa, is one such molecule, with proven antioxidant and anti-inflammatory properties. To overcome its pharmacokinetic limitations, we developed Jamamina, a sustainable nanostructured lipid carrier (NLC) system incorporating curcumin and a Natural Deep Eutectic Solvent (NaDES) phase composed of malic acid and betaine. The bioinspired formulation, based on Amazonian tucumã butter and jambu oil, achieved high encapsulation efficiency (>80%) and curcumin amorphization, enhancing solubility and colloidal stability. In vitro assays with L132 demonstrated potent antioxidant activity (DPPH), a significant reduction in pro-inflammatory cytokines (TNF-α and IL-6), and upregulation of IL-10. The system also suppressed MMP-2/9 activity and preserved cytoskeletal integrity under oxidative stress. These findings highlight Jamamina as a multifunctional, eco-friendly nanoplatform that enables the pharmacological application of plant-derived curcumin, representing a promising platform for modulating redox balance and investigating inflammation in epithelial-like contexts. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Graphical abstract

23 pages, 2306 KB  
Article
Phytochemical Profile and Bioactive Evaluation of Porophyllum gracile
by María de Guadalupe Ruiz-Almada, Maribel Plascencia-Jatomea, Armando Burgos-Hernández, Hisila del Carmen Santacruz-Ortega, Luis Noguera-Artiaga and Carmen María López-Saiz
Int. J. Mol. Sci. 2025, 26(17), 8350; https://doi.org/10.3390/ijms26178350 - 28 Aug 2025
Viewed by 604
Abstract
Plants of the genus Porophyllum (Asteraceae) have traditional medicinal uses, but only 8 of 25 species have been studied. This study aimed to profile volatile compounds, phenolics, and fatty acids in dried leaves and stems of Porophyllum gracile and assess biological [...] Read more.
Plants of the genus Porophyllum (Asteraceae) have traditional medicinal uses, but only 8 of 25 species have been studied. This study aimed to profile volatile compounds, phenolics, and fatty acids in dried leaves and stems of Porophyllum gracile and assess biological activities of extracts obtained using different solvents. GC-MS, HPLC-DAD, and GC-FID analyses identified over 120 compounds, including fatty acids, chlorogenic acid derivatives, quercetin derivatives, terpenes, ketones, aldehydes, and alcohols. Antioxidant activity in vitro (ABTS, DPPH, and FRAP assays) suggested a strong electron-transfer-mediated mechanism. In ARPE-19 cells under doxorubicin-induced oxidative stress, hexane and ethanolic extracts from leaves and stems significantly reduced intracellular reactive oxygen species, in some cases outperforming vitamin E. No antiproliferative activity was detected against cancer cell lines (MDA-MB-231, HeLa, A549, HCT 116, 22Rv1), nor cytotoxicity toward non-cancerous cells (ARPE-19, hFOB 1.19). This first detailed phytochemical characterization of P. gracile demonstrates its cellular antioxidant potential and supports its application as a natural antioxidant source in functional foods or nutraceuticals. Future work should elucidate mechanisms, isolate active compounds, and evaluate bioavailability in in vivo models. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

19 pages, 1152 KB  
Article
Phenanthrene Monomers and Dimers from Juncus tenuis with Antiproliferative Activity and Synergistic Effect with Doxorubicin Against Human Colon Cancer Cell Lines
by Anita Barta, Annamária Kincses, Dragica Purger, Gabriella Spengler, Judit Hohmann and Andrea Vasas
Int. J. Mol. Sci. 2025, 26(16), 7665; https://doi.org/10.3390/ijms26167665 - 8 Aug 2025
Viewed by 480
Abstract
Continuing our search for bioactive compounds in species from the Juncaceae family, we investigated Juncus tenuis. The structures of five previously undescribed phenanthrenes—tenuins A–E (15)—and 14 known phenanthrenes (619), along with other components, were [...] Read more.
Continuing our search for bioactive compounds in species from the Juncaceae family, we investigated Juncus tenuis. The structures of five previously undescribed phenanthrenes—tenuins A–E (15)—and 14 known phenanthrenes (619), along with other components, were isolated and characterized using nuclear magnetic resonance and high-resolution mass spectrometry measurements. The antiproliferative activity of all of the isolated phenanthrenes was evaluated against the human colorectal adenocarcinoma cell lines COLO 205 (doxorubicin-sensitive) and COLO 320 (doxorubicin-resistant), as well as a non-tumorigenic human fibroblast cell line (CCD-19Lu), using the MTT viability assay. Diphenanthrenes 4, 5, and 19 showed the most potent antiproliferative effects, with IC50 values ranging from 7.60 to 17.32 μM; however, these compounds lacked selectivity toward cancer cells. To explore potential chemosensitizing properties, the synergistic effects of the phenanthrenes with the anticancer drug doxorubicin were also examined in the COLO 320 cells. Notably, compound 2 exhibited very strong synergism (CI = 0.021), indicating a highly potent interaction. These findings highlight J. tenuis as a valuable source of phenanthrenes and demonstrate the synergistic anticancer potential of natural phenanthrenes with doxorubicin, offering promising prospects for overcoming multidrug resistance in colorectal cancer therapy. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

14 pages, 2095 KB  
Article
Syringin and Phillygenin—Natural Compounds with a Potential Role in Preventing Lipid Deposition in Macrophages in the Context of Human Atherosclerotic Plaque
by Agnieszka Filipek, Agnieszka Sadowska, Monika Skłodowska, Maja Muskała and Edyta Czepielewska
Int. J. Mol. Sci. 2025, 26(13), 6444; https://doi.org/10.3390/ijms26136444 - 4 Jul 2025
Viewed by 615
Abstract
Syringin is a phenylpropanoid glycoside isolated from the bark of Syringa vulgaris. Phillygenin is a lignan obtained mainly from the fruits and flowers of Forsythia intermedia. Both compounds have shown potent anti-inflammatory and antioxidant properties. We investigated the potential role of [...] Read more.
Syringin is a phenylpropanoid glycoside isolated from the bark of Syringa vulgaris. Phillygenin is a lignan obtained mainly from the fruits and flowers of Forsythia intermedia. Both compounds have shown potent anti-inflammatory and antioxidant properties. We investigated the potential role of syringin and phillygenin in preventing lipid deposition in macrophages. Syringin and phillygenin significantly (p < 0.001) reduced lipid deposition in macrophages in a dose-dependent manner. For syringin, the greatest reduction in CD36 receptor expression was found to be over 80% (50 μg/mL) compared to the cholesterol-stimulated control (p < 0.001). Phillygenin inhibited CD36 receptor expression by approximately 25% (50 μg/mL), compared to the stimulated control (p < 0.05). For syringin, the CD36 receptor regulation pathway was PPAR-γ dependent. Phillygenin showed a statistically significant (p < 0.001) increase in the expression of the ABCA1 transporter: 2.5-fold (10 μg/mL), 3-fold (20 μg/mL) and 4-fold (50 μg/mL) compared to the cholesterol-stimulated control. Syringin did not significantly increase ABCA1 expression. For phillygenin, the activation pathway of the ABCA1 transporter was HO-1dependent. Our study showed that syringin inhibits the cholesterol-induced differentiation of macrophages into foam cells. Moreover, phillygenin increased cholesterol efflux from macrophages. Therefore, syringin and phillygenin may be valuable agents in the prevention of early and late atherosclerosis. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

Review

Jump to: Research

35 pages, 3582 KB  
Review
Polyphenols in the Central Nervous System: Cellular Effects and Liposomal Delivery Approaches
by Mateusz Kaluza, Dominika Ksiazek-Winiarek, Piotr Szpakowski, Joanna Czpakowska, Julia Fijalkowska and Andrzej Glabinski
Int. J. Mol. Sci. 2025, 26(13), 6477; https://doi.org/10.3390/ijms26136477 - 4 Jul 2025
Cited by 1 | Viewed by 2758
Abstract
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and [...] Read more.
Neurodegenerative and neuroinflammatory diseases of the central nervous system are closely linked to aging and sustained oxidative and inflammatory stress. Polyphenols, plant-derived secondary metabolites, exhibit broad biological activities, including antioxidant and anti-inflammatory effects, the modulation of pathways such as PI3K/Akt, MAPK, Nrf2, and CREB, and the regulation of neurogenesis and microglial activation. This review focuses on the cell-specific actions of selected polyphenols in neurons, astrocytes, microglia, and oligodendrocytes within the context of Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. A major limitation to the therapeutic use of polyphenols is their poor bioavailability, due to instability, low solubility, and limited blood–brain barrier penetration. Liposomal nanocarriers are explored as promising delivery systems to overcome these barriers. Both conventional and functionalized liposomes (e.g., PEGylated, receptor-targeted) are discussed, alongside in vitro and in vivo studies demonstrating enhanced efficacy compared to free compounds. Intranasal delivery is also presented as a viable alternative to oral administration. Overall, polyphenols offer great potential as neuroprotective agents, and liposome-based delivery platforms have the potential to significantly enhance their clinical potential, provided that key formulation and targeting issues are addressed. Full article
(This article belongs to the Special Issue Plant-Derived Bioactive Compounds for Pharmacological Applications)
Show Figures

Figure 1

Back to TopTop