Special Issue "Study of the Influence of Abiotic and Biotic Stress Factors on Plants"

A special issue of Horticulturae (ISSN 2311-7524). This special issue belongs to the section "Biotic and Abiotic Stress".

Deadline for manuscript submissions: 31 August 2021.

Special Issue Editors

Prof. Dr. Agnieszka Hanaka
E-Mail Website
Guest Editor
Department of Plant Physiology and Biophysics, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
Interests: plant physiology; plant response to abiotic and biotic stress factors; metal phytotoxicity; enzymatic and non-enzymatic antioxidants; secondary metabolites; photosynthesis
Prof. Dr. Jolanta Jaroszuk-Ściseł
E-Mail Website
Guest Editor
Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19, 20-033 Lublin, Poland
Interests: plant biocontrol; bio-fertilization and protection; biotic and abiotic factors of plant resistance; inhibition of phytopathogen growth; soil bioremediation by microorganisms; cell wall-degrading enzymes and microbiological metabolites; siderophores; phytohormones
Dr. Małgorzata Majewska
E-Mail Website
Guest Editor
Department of Industrial and Environmental Microbiology, Institute of Biological Sciences, Faculty of Biology and Biotechnology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
Interests: Cd immobilization; Cd mobilization; biomineralization of Cd-containing biomass; rhizosphere microorganisms; microbial interaction

Special Issue Information

Dear Colleagues,

In contrast to their inability to escape from adverse environmental conditions, plants have developed a vast range of adaptations which allow them to cope with unfavorable agents successfully. These stresses are of different nature and are commonly divided into abiotic (physical and chemical factors) and biotic ones. Among abiotic factors are nutrient deficiency, radiation, temperature stress, water stress, salinity, and heavy metal toxicity, which consequently result in oxidative stress. Among the abiotic factors belong pathogens, bacteria, fungi, viruses, insects, and weeds. In the face of stresses, plants can react through a sophisticated defense mechanism classified as innate and acquired or local and systemic responses. These mechanisms are responsible for various morphological, anatomical, biochemical, and physiological implications enabling tolerance or resistance to stressors. Diversification in the attained responses can be the result of the plant species, its age and general condition, as well as the intensity and duration of the stressor. One conclusion remains obvious—in order to survive, plants must generate sufficient strategies to maintain their growth and development.

By being able to better understand the common and distinctive processes taking place in the plant organism and their cross-connections, we will be able to protect plants and apply better solutions to achieve optimal growth parameters. Moreover, such knowledge can be further employed in plant biotechnology to accomplish the desired environmental and industrial goals.

This Special Issue aims to provide deeper insight into the influence of stress factors at the cellular, tissue, organ, and whole plant level in order to extend future applicational features. Both non-modified and genetically modified plants are acceptable. Especially welcome are approaches combining stresses and applications of a wide range of fields, from anatomy, through biochemistry, physiology to molecular biology and genetics.

Prof. Dr. Agnieszka Hanaka
Prof. Dr. Jolanta Jaroszuk-Ściseł
Dr. Małgorzata Majewska
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Horticulturae is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 1400 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • Abiotic stress
  • Biotic stress
  • Oxidative stress
  • Secondary metabolites
  • Phytohormone
  • Signaling pathways
  • Gene expression
  • Photosynthesis
  • Tolerance
  • Resistance

Published Papers (6 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Article
Twenty-Years of Hop Irrigation by Flooding the Inter-Row Did Not Cause a Gradient along the Row in Soil Properties, Plant Elemental Composition and Dry Matter Yield
Horticulturae 2021, 7(7), 194; https://doi.org/10.3390/horticulturae7070194 - 15 Jul 2021
Viewed by 195
Abstract
In hops (Humulus lupulus L.), irrigation by flooding the inter-row can carry away suspended particles and minerals, causing gradients in soil fertility. The effect of more than 20 years of flooding irrigation on soil and plants was evaluated in two hop fields [...] Read more.
In hops (Humulus lupulus L.), irrigation by flooding the inter-row can carry away suspended particles and minerals, causing gradients in soil fertility. The effect of more than 20 years of flooding irrigation on soil and plants was evaluated in two hop fields by measuring soil and plant variables in multiple points along the rows. In a second experiment 1000 kg ha−1 of lime was applied and incorporated into the soil to assess whether liming could moderate any gradient created by the irrigation. At different sampling points along the rows, significant differences were recorded in soil properties, plant elemental composition and dry matter yield, but this was not found to exist over a continuous gradient. The variations in cone yield were over 50% when different sampling points were compared. However, this difference cannot be attributed to the effect of irrigation, but rather to an erratic spatial variation in some of the soil constituents, such as sand, silt and clay. Flooding irrigation and frequent soil tillage resulted in lower porosity and higher soil bulk density in the 0.0–0.10 m soil layer in comparison to the 0.10–0.20 m layer. In turn, porosity and bulk density were respectively positively and negatively associated with crop productivity. Thus, irrigation and soil tillage may have damaged the soil condition but did not create any gradient along the row. The ridge appeared to provide an important pool of nutrients, probably caused by mass flow due to the evaporation from it and a regular supply of irrigation water to the inter-row. Liming raised the soil pH slightly, but had a relevant effect on neither soil nor plants, perhaps because of the small amounts of lime applied. Full article
(This article belongs to the Special Issue Study of the Influence of Abiotic and Biotic Stress Factors on Plants)
Show Figures

Figure 1

Article
Signal Intensity of Stem Diameter Variation for the Diagnosis of Drip Irrigation Water Deficit in Grapevine
Horticulturae 2021, 7(6), 154; https://doi.org/10.3390/horticulturae7060154 - 15 Jun 2021
Viewed by 399
Abstract
Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study describes a study on stem diameter variations of grapevine planted [...] Read more.
Precise irrigation management of grapevines in greenhouses requires a reliable method to easily quantify and monitor the grapevine water status to enable effective manipulation of the water stress of the plants. This study describes a study on stem diameter variations of grapevine planted in a greenhouse in the semi-arid area of Northwest China. In order to determine the applicability of signal intensity of stem diameter variation to evaluate the water status of grapevine and soil. The results showed that the relative variation curve of the grapevine stem diameter from the vegetative stage to the fruit expansion stage showed an overall increasing trend. The correlations of MDS (maximum daily shrinkage) and DI (daily increase) with meteorological factors were significant (p < 0.05), and the correlations with SWP, RWC and soil moisture were weak. Although MDS and DI can diagnose grapevine water status in time, SIMDS and SIDI have the advantages of sensitivity and signal intensity compared with other indicators. Compared with MDS and DI, the R2 values of the regression equations of SIMDS and SIDI with SWP and RWC were high, and the correlation reached a very significant level (p < 0.01). Thus, SIMDS and SIDI are more suitable for the diagnosis of grapevine water status. The SIMDS peaked at the fruit expansion stage, reaching 0.957–1.384. The signal-to-noise ratio of SIDI was higher than that of MDS across the three treatments at the vegetative stage. The value and signal-to-noise ratio of SIDI at the flowering stage were similar to those of SIMDS, while the correlation between SIDI and the soil moisture content was higher than that of SIMDS. It can be concluded that that SIDI is suitable as an indicator of water status of grapevine and soil during the vegetative and flowering stages. In addition, the signal-to-noise ratio of SIMDS during the fruit expansion and mature stages was significantly higher than that of SIDI. Therefore, SIMDS is suitable as an indicator of the moisture status of grapevine and soil during the fruit expansion and mature stages. In general, SIMDS and SIDI were very good predictors of the plant water status during the growth stage and their continuous recording offers the promising possibility of their use in automatic irrigation scheduling in grapevine. Full article
(This article belongs to the Special Issue Study of the Influence of Abiotic and Biotic Stress Factors on Plants)
Show Figures

Figure 1

Article
Adaptive Morphophysiological Features of Neottia ovata (Orchidaceae) Contributing to Its Natural Colonization on Fly Ash Deposits
Horticulturae 2021, 7(5), 109; https://doi.org/10.3390/horticulturae7050109 - 11 May 2021
Viewed by 508
Abstract
In previous decades, some species of the Orchidaceae family have been found growing in man-made habitats. Neottia ovata is one of the most widespread orchids in Europe, however it is quite rare in Russia and is included in several regional Red Data Books. [...] Read more.
In previous decades, some species of the Orchidaceae family have been found growing in man-made habitats. Neottia ovata is one of the most widespread orchids in Europe, however it is quite rare in Russia and is included in several regional Red Data Books. The purpose of this study was to compare the chemical composition and morphophysiological parameters of N. ovata from two forest communities of the Middle Urals, Russia: natural and transformed (fly ash dump of Verkhnetagil’skaya Thermal Power Station) for determining orchid adaptive features. The content of most of the studied metals in the underground parts (rhizome + roots) of N. ovata was considerably higher than in the leaves, which diminished the harmful effect of toxic metals on the aboveground organs. The adaptive changes in the leaf mesostructure of N. ovata such as an increase in epidermis thickness, the number of chloroplasts in the cell, and the internal assimilating surface were found for the first time. The orchids from the fly ash deposits were characterized by a higher content of chlorophyll b and carotenoids than plants from the natural forest community that evidenced the compensatory response on the decrease in chlorophyll a. The ability of N. ovata from the transformed habitat to maintain a relatively favorable water balance and stable assimilation indexes further contribute to its high viability. The study of orchid adaptive responses to unfavorable factors is necessary for their successful naturalization and introduction into a new environment. Full article
(This article belongs to the Special Issue Study of the Influence of Abiotic and Biotic Stress Factors on Plants)
Show Figures

Figure 1

Article
Effect of 5-Aminolevulinic Acid (5-ALA) on Leaf Chlorophyll Fast Fluorescence Characteristics and Mineral Element Content of Buxus megistophylla Grown along Urban Roadsides
Horticulturae 2021, 7(5), 95; https://doi.org/10.3390/horticulturae7050095 - 02 May 2021
Viewed by 497
Abstract
It is well known that trees grown on roadsides suffer from stressful environments, including poor soils, bad weather, and harmful gases from automobile exhaust. Improving the adaptability of roadside trees to adverse environments is important for urban management. An experiment was carried out [...] Read more.
It is well known that trees grown on roadsides suffer from stressful environments, including poor soils, bad weather, and harmful gases from automobile exhaust. Improving the adaptability of roadside trees to adverse environments is important for urban management. An experiment was carried out with six-year-old Buxus megistophylla Levl. hedgerows, where 20 mg/L 5-aminolevulinic acids (5-ALA) solution was sprayed on the blade surface at the end of April. Three months later, plant morphology, chlorophyll fast fluorescence characteristics, antioxidant enzyme activities and the mineral element content were investigated. The results showed that leaf size and thickness were significantly greater with 5-ALA treatment, and the leaf color was also greener than those of the control. 5-ALA treatment significantly promoted the electron transfer activity of the PSII reaction center on the donor side, the reaction center itself and the receptor side. It reduced energy dissipation through the heat with increased photochemical quantum yields. The activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in leaves and roots, were stimulated by 5-ALA treatment. The content of soluble sugars and free proline in leaves was significantly increased by 5-ALA treatment, as were the absorption and accumulation of several kinds of mineral nutrient elements, such as nitrogen, phosphate, calcium, magnesium, iron, copper and boron. Additionally, 5-ALA application significantly increased the content of cadmium, mercury, chromium and lead in the roots but decreased them in the leaves. This implies that 5-ALA may induce a mechanism in B. megistophylla in which toxic elements were intercepted in roots to avoid accumulation in leaves, which ensured healthy growth of the aboveground tissues. 5-ALA may regulate the absorption and utilization of mineral nutrient elements in soil with the interception of toxic heavy metal elements in roots, promote leaf photosynthetic performance, induce the accumulation of soluble sugars and free proline, and improve the antioxidant enzyme systems for plants to adapt to the stressful environment of urban roads. These results provide a basis for 5-ALA applications alongside city roads. Full article
(This article belongs to the Special Issue Study of the Influence of Abiotic and Biotic Stress Factors on Plants)
Show Figures

Figure 1

Article
Exogenous EBR Ameliorates Endogenous Hormone Contents in Tomato Species under Low-Temperature Stress
Horticulturae 2021, 7(4), 84; https://doi.org/10.3390/horticulturae7040084 - 17 Apr 2021
Cited by 1 | Viewed by 532
Abstract
Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant [...] Read more.
Low-temperature stress is a type of abiotic stress that limits plant growth and production in both subtropical and tropical climate conditions. In the current study, the effects of 24-epi-brassinolide (EBR) as analogs of brassinosteroids (BRs) were investigated, in terms of hormone content, antioxidant enzyme activity, and transcription of several cold-responsive genes, under low-temperature stress (9 °C) in two different tomato species (cold-sensitive and cold-tolerant species). Results indicated that the treatment with exogenous EBR increases the content of gibberellic acid (GA3) and indole-3-acetic acid (IAA), whose accumulation is reduced by low temperatures in cold-sensitive species. Furthermore, the combination or contribution of BR and abscisic acid (ABA) as a synergetic interaction was recognized between BR and ABA in response to low temperatures. The content of malondialdehyde (MDA) and proline was significantly increased in both species, in response to low-temperature stress; however, EBR treatment did not affect the MDA and proline content. Moreover, in the present study, the effect of EBR application was different in the tomato species under low-temperature stress, which increased the catalase (CAT) activity in the cold-tolerant species and increased the glutathione peroxidase (GPX) activity in the cold-sensitive species. Furthermore, expression levels of cold-responsive genes were influenced by low-temperature stress and EBR treatment. Overall, our findings revealed that a low temperature causes oxidative stress while EBR treatment may decrease the reactive oxygen species (ROS) damage into increasing antioxidant enzymes, and improve the growth rate of the tomato by affecting auxin and gibberellin content. This study provides insight into the mechanism by which BRs regulate stress-dependent processes in tomatoes, and provides a theoretical basis for promoting cold resistance of the tomato. Full article
(This article belongs to the Special Issue Study of the Influence of Abiotic and Biotic Stress Factors on Plants)
Show Figures

Figure 1

Article
The Use of Halophytic Companion Plant (Portulaca oleracea L.) on Some Growth, Fruit, and Biochemical Parameters of Strawberry Plants under Salt Stress
Horticulturae 2021, 7(4), 63; https://doi.org/10.3390/horticulturae7040063 - 26 Mar 2021
Viewed by 474
Abstract
Strawberry is a salt-sensitive plant adversely affected by slightly or moderately saline conditions. The growth, fruit, and biochemical parameters of strawberry plants grown under NaCl (0, 30, 60, and 90 mmol L−1) conditions with or without a halophytic companion plant ( [...] Read more.
Strawberry is a salt-sensitive plant adversely affected by slightly or moderately saline conditions. The growth, fruit, and biochemical parameters of strawberry plants grown under NaCl (0, 30, 60, and 90 mmol L−1) conditions with or without a halophytic companion plant (Portulaca oleracea L.) were elucidated in a pot experiment. Salt stress negatively affected the growth, physiological (stomatal conductance and electrolyte leakage), and biochemical parameters such as chlorophyll contents (chl-a and chl-b); proline, hydrogen peroxide, malondialdehyde, catalase, and peroxidase enzyme activities; total soluble solids; and lycopene and vitamin C contents, as well as the mineral uptake, of strawberry plants. The companionship of P. oleracea increased fresh weight, dry weight, and fruit average weight, as well as the total fruit yield of strawberry plants along with improvements of physiological and biochemical parameters. This study showed that the cultivation of P. oleracea with strawberry plants under salt stress conditions effectively increased strawberry fruit yield and quality. Therefore, we suggest that approaches towards the use of P. oleracea could be an environmentally friendly method that should be commonly practiced where salinity is of great concern. Full article
(This article belongs to the Special Issue Study of the Influence of Abiotic and Biotic Stress Factors on Plants)
Show Figures

Figure 1

Back to TopTop