Novelties in Wood Engineering and Forestry—2nd Edition

A special issue of Forests (ISSN 1999-4907). This special issue belongs to the section "Wood Science and Forest Products".

Deadline for manuscript submissions: closed (15 March 2025) | Viewed by 3472

Special Issue Editors


E-Mail Website
Guest Editor
Department of Wood Engineering, Transilvania University of Brasov, 500036 Brasov, Romania
Interests: wood composite material; lighter wood particles; the physics of wood; the quality of composites
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Wood Processing and Design of Wooden Products, Transilvania University of Brasov, 500036 Brasov, Romania
Interests: wood science; non-human forest products; dendrocronology; classification and exploitation of forest resources

E-Mail Website
Guest Editor
Department of Wood Processing and Design od Wood Products, Transilvania University of Brasov, 500036 Brasov, Romania
Interests: furniture; lignocellulosic composites; wood; design; wood civilization
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

This Special Issue will deal with various aspects of forestry and wood processing. In particular, in the field of forestry, the Special Issue invites research on woody biomass applications, the main products and byproducts of forests, log exploitation, the primary processing of round wood, and the quality of exploited wood. Regarding the wood processing part, this Special Issue will receive works on cutting round wood from timber and veneers; wood processing to create furniture, parquet, doors and windows; wood biomass including briquettes and pellets; the thermochemical treatment of wood; antique wood; finishing processes; the restoration of cultural heritage objects; and wood-based composites.

Potential topics include but are not limited to the following:

  • Forest byproducts;
  • Primary log processing;
  • Timber and veneer technologies;
  • Furniture, parquet, and door technologies;
  • Briquettes and pellets;
  • Wood finishing and coatings;
  • Wood restoration, preservation, and conservation;
  • The thermochemical treatment of wood;
  • Wood composites;
  • Wooden cultural heritage objects;
  • Antique wood.

Prof. Dr. Aurel Lunguleasa
Prof. Dr. Florin Dinulica
Prof. Dr. Camelia Cosereanu
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Forests is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • woody biomass
  • forest byproducts
  • timber
  • veneer
  • furniture
  • briquettes
  • pellets
  • wooden cultural heritage object
  • wood restoration

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (5 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

Jump to: Review

19 pages, 753 KiB  
Article
How the Scots Pine and Beech Aging Process Affects Wood
by Tomasz Jelonek, Katarzyna Klimek, Bartłomiej Naskrent, Arkadiusz Tomczak, Marcin Jakubowski, Robert Kuźmiński, Tomasz Szwed, Joanna Kopaczyk, Daniel Grabowski and Jarosław Szaban
Forests 2025, 16(5), 772; https://doi.org/10.3390/f16050772 (registering DOI) - 30 Apr 2025
Abstract
This study investigates the effects of aging trees on wood properties, which are caused by climate change, the withdrawal of coniferous species from Central Europe, and the increased crown sweep in old beech stands. The research was carried out in old tree stands [...] Read more.
This study investigates the effects of aging trees on wood properties, which are caused by climate change, the withdrawal of coniferous species from Central Europe, and the increased crown sweep in old beech stands. The research was carried out in old tree stands with a high proportion of Scots pine (Pinus sylvestris L.) and beech (Fagus sylvatica L.) species. The collected material was from five tree pine stands aged between 151 and 182 and three beech stands between the ages of 165 and 184. The samples were subjected to an analysis of wood properties such as density and modulus of elasticity. The results and findings of this study indicate that the Scots pine currently reaches the optimal wood tissue quality at around 80 years of age, which is approximately 20 years earlier than the species’ anticipated cutting age. However, the beech, which reaches maturity at about 120–140 years, reaches the maximal quality of wood tissue already at the age of 80–90 years. Above the age of 110, the quality of beech wood (density and modulus of elasticity) decreases. Moreover, it is necessary to emphasize that the radial trend of wood density does not coincide with the trend of the modulus of elasticity. Additionally, it is found that wood density is not a perfect representation of its mechanical qualities; it can, however, be regarded as a measure of the technical quality of wood tissue. The results indicate that the pine and the beech that grow on the European Plain mature faster and reach technical quality earlier than just a couple of decades before. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
19 pages, 2090 KiB  
Article
Plywood Manufacturing Using Various Combinations of Hardwood Species
by Marcus Cordier, Nils Johannsen, Bettina Kietz, Dirk Berthold and Carsten Mai
Forests 2025, 16(4), 622; https://doi.org/10.3390/f16040622 - 2 Apr 2025
Viewed by 260
Abstract
This study evaluates the potential of various hardwood combinations in plywood production in response to increasing wood demand and a changing roundwood supply in Central Europe. Six different combinations of nine-layer plywood were produced using 2 mm rotary-cut veneers from lime (Tilia [...] Read more.
This study evaluates the potential of various hardwood combinations in plywood production in response to increasing wood demand and a changing roundwood supply in Central Europe. Six different combinations of nine-layer plywood were produced using 2 mm rotary-cut veneers from lime (Tilia spp.), Norway maple (Acer platanoides), European hornbeam (Carpinus betulus), Sycamore maple (Acer pseudoplatanus), mountain ash (Sorbus aucuparia), and European beech (Fagus sylvatica) with phenol–formaldehyde adhesive, and they were compared to silver birch (Betula pendula) plywood as a reference. The raw densities of the test panels varied between 0.85 and 1.04 times the reference density (795 kg m−3). Flexural strengths (the modulus of rupture, MOR) ranged from 68 N mm−2 to 104 N mm−2 for a parallel fibre orientation and 44 N mm−2 to 61 N mm−2 for a perpendicular fibre orientation of the top layers. The modulus of elasticity (MOE) ranged from 7160 N mm−2 to 11,737 N mm−2 for the parallel fibre orientation and from 4366 N mm−2 to 5575 N mm−2 for the perpendicular orientation. The tensile shear strength varied between 0.91 and 1.69 times the reference (1.49 N mm−2). The thickness swelling after 24 h was higher in all variants than the reference (6.4%), with factors between 1.39 and 1.64. A significant effect was observed when layers with a lower density were arranged on the outside and those with a higher density in the core, resulting in a more uniform density distribution across the cross-section after hot pressing. This created a levelling effect on mechanical and physical properties, especially the modulus of rupture (MOR) and the modulus of elasticity (MOE). Overall, the evaluated hardwood combinations demonstrated comparable properties to the birch reference and industrially produced birch plywood. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

13 pages, 2574 KiB  
Article
Energetic Features of Hardwood Pellet Evaluated by Effect Size Summarisation
by Rodolfo Picchio, Rachele Venanzi, Vincenzo Civitarese, Aurora Bonaudo, Angela Lo Monaco and Francesco Latterini
Forests 2024, 15(7), 1259; https://doi.org/10.3390/f15071259 - 19 Jul 2024
Cited by 1 | Viewed by 991
Abstract
High-quality pellets are typically produced from coniferous sawdust. However, achieving comparable quality from alternative feedstocks, such as broadleaf wood, often necessitates pre-treatments or additives. Yet, within the framework of small-scale pellet production, local forest enterprises may lack the resources for such treatments and [...] Read more.
High-quality pellets are typically produced from coniferous sawdust. However, achieving comparable quality from alternative feedstocks, such as broadleaf wood, often necessitates pre-treatments or additives. Yet, within the framework of small-scale pellet production, local forest enterprises may lack the resources for such treatments and usually produce pellets from the whole trees, including branches, leaves and tops. This can have an impact on the quality of the pellets obtained in this manner. To be classified as high-quality pellets (A1 class), the specific features of the pellet must be higher or fall below the thresholds specified in the EN ISO 17225 standard. In this study, we developed an alternative statistical approach to evaluate pellet quality in comparison to the constant thresholds reported in the technical standard. We applied such an approach to evaluate the quality of pellets produced from the broadleaved species common in the Mediterranean forestry, including European beech (Fagus sylvatica L.), Turkey oak (Quercus cerris L.), Eucalyptus (clone Eucalyptus camaldulensis x C. bicostata), and Poplar clone AF6. In particular, we focused on three variables that are generally the most troublesome for the production of high-quality pellets from the broadleaved species, namely bulk density, ash content, and lower heating value. We found that the beech pellets showed satisfactory bulk density (average effect size of −1.2, with no statistical difference in comparison to the standard’s threshold) and ash content (average effect size of about −5 and significantly lower than the standard’s threshold), but the heating value was significantly lower than the threshold required by the standard (average effect size of about −3). Conversely, other investigated species exhibited notable deficiencies, with turkey oak pellets displaying acceptable heating values. We found a significant improvement in ash content and heating value with increasing stem age within the same species thus suggesting that material derived from thinning interventions might be preferable over coppice-derived biomass for high-quality pellet production. We suggest that future research on the topic should focus on investigating pellets produced from blends of beech and turkey oak biomass. We further recommend a wider application of the proposed statistical approach, considering that it is clear and easy to interpret, and allows for a statistical comparison of the obtained values against the requirements of the technical standard. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

25 pages, 5995 KiB  
Article
Pellets Obtained from the Husks of Sunflower Seeds and Beech Sawdust for Comparison
by Aurel Lunguleasa, Alin Olarescu and Cosmin Spirchez
Forests 2024, 15(6), 902; https://doi.org/10.3390/f15060902 - 23 May 2024
Cited by 1 | Viewed by 1156
Abstract
The energetic fossil resources of the world have decreased drastically in recent decades, and the quick and efficient solution to replace them is to use renewable biomass resources. This category also includes vegetable biomass, and within it, sunflower seed shells have an important [...] Read more.
The energetic fossil resources of the world have decreased drastically in recent decades, and the quick and efficient solution to replace them is to use renewable biomass resources. This category also includes vegetable biomass, and within it, sunflower seed shells have an important contribution. The present work aimed to analyze the pellets obtained from the husks of sunflower seeds, as lignocellulosic biomass resulting from the production of edible oil, and for comparison, some pellets from beech sawdust were used. The main physical properties (such as moisture content, density, coefficient of densification, etc.), mechanical properties (such as shear strength) and calorific properties (high and low calorific value, calorific density, volatile content and ash content) were determined and statistically analyzed. As the main element of comparison of these types of pellets, the pellets obtained from beech sawdust were used. For the comparison of the pellets obtained from the husks of sunflower seeds, especially to observe their differences compared to the torrefied pellets, charcoal was chosen. The conclusions highlighted the fact that sunflower seed husks are an important source of biomass that can be used to obtain lignocellulosic pellets, and the torrefied pellets obtained from these husks are comparable with the energetic value of charcoal. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

Review

Jump to: Research

23 pages, 5096 KiB  
Review
Engineered Bamboo Building Materials: Types, Production, and Applications
by Mahdi Hosseini, Milan Gaff, Yang Wei and Chaoyu Tu
Forests 2025, 16(4), 662; https://doi.org/10.3390/f16040662 - 10 Apr 2025
Viewed by 551
Abstract
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from [...] Read more.
The challenges highlighted at the 29th Conference of the Parties (COP29) emphasize the importance of using renewable resources in the architecture, engineering, and construction (AEC) industry. The building and construction sector is a major contributor to environmental pollution, with most emissions stemming from the extraction, transportation, production, and disposal of construction materials. As a result, developing renewable building materials is essential. In the past decade, bamboo has gained significant attention from researchers due to its strength, sustainability, high yield, and rapid growth. Bamboo in its original form has been used in construction for centuries, and recent innovations have led to the creation of engineered bamboo materials designed for more versatile applications. Researchers have been focused on understanding the physical and mechanical properties of engineered bamboo to assess its potential as a sustainable alternative to traditional building materials. However, modern practitioners are still unfamiliar with engineered bamboo materials, their types, and where they can be used. This article highlights the most widely researched engineered bamboo materials that have been used in the construction of small architectural forms and bigger structures. It provides an overview of common engineered bamboo building materials, namely laminated bamboo lumber, laminated bamboo sheets, parallel strand bamboo, bamboo mat boards, and bamboo particleboards, and their manufacturing processes and applications, offering valuable information for current practitioners and future research. Full article
(This article belongs to the Special Issue Novelties in Wood Engineering and Forestry—2nd Edition)
Show Figures

Figure 1

Back to TopTop