Lignin: Fermentation and Biorefinery Potential

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: 31 July 2025 | Viewed by 1185

Special Issue Editors


E-Mail
Guest Editor
Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
Interests: bioprocess engineering; industrial microbiology; biofuels; biobased products; fermentation process development
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Department of Biology, Hood College, 401 Rosemont Avenue, Frederick, MD 21701, USA
Interests: biofuels; fermentation; enzyme catalysis; agricultural and biological sciences; biochemical conversion
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Lignocellulosic biomass has gained significant attention as a renewable feedstock for producing ethanol and other commercially important chemicals, primarily due to its abundant availability. It is composed of three major components: cellulose, hemicellulose, and lignin. Historically, lignin was regarded as a waste product because of its strong resistance to biological transformation. In the early processes developed for ethanol production, lignin was often burned to generate thermal energy for internal operations within biorefineries. However, recent advancements have highlighted the importance of utilizing lignin as a valuable feedstock for producing high-value-added products, alongside cellulose and hemicellulose. This shift is crucial for improving the economic feasibility and sustainability of biorefineries. As a result, various innovative processes for the bioconversion of lignin into fuels and chemicals have been developed, demonstrating its potential as a versatile resource.

The objective of this Special Issue is to feature both recent groundbreaking research findings and comprehensive review articles on the bioconversion of lignin for the production of fuels and chemicals suitable for biorefinery applications. The scope extends beyond processing technologies to encompassing advancements in the development of novel enzymes and microbial strains tailored for efficient lignin conversion. Additionally, contributions that explore the integration of lignin conversion technologies into existing biorefinery frameworks, life cycle analyses, and economic assessments are highly encouraged. If you are interested in contributing a review article, we recommend contacting one of the editors to discuss the relevance and scope of the proposed topic before submitting your manuscript.

Sincerely,

Dr. Nhuan Nghiem
Dr. Daehwan Kim
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • cellulose
  • hemicellulose
  • lignin
  • biorefinery
  • development of novel enzymes
  • biofuels

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 3217 KiB  
Article
Enhancement of Biomethane Yield from Spent Mushroom Substrate: Biological Pretreatment with the Chlamydospores of Trichoderma viride
by Wentao Zhu, Xianzhi Lai, Changfa Liu, Xiao Wu, Xiaochen Bai, Yafan Cai, Xiaoling Zhao, Zhe Li, Yongren Hao, Yanhua Huang, Zehui Zheng and Jie Chu
Fermentation 2025, 11(3), 152; https://doi.org/10.3390/fermentation11030152 - 18 Mar 2025
Viewed by 334
Abstract
Fungal chlamydospores are asexual spores formed by fungi under adverse conditions and could be used in biological pretreatment for biogas projects fed by lignocellulosic substrates. In this study, Trichoderma viride (Tv) chlamydospores were used as the pretreatment agent to enhance the methane yield [...] Read more.
Fungal chlamydospores are asexual spores formed by fungi under adverse conditions and could be used in biological pretreatment for biogas projects fed by lignocellulosic substrates. In this study, Trichoderma viride (Tv) chlamydospores were used as the pretreatment agent to enhance the methane yield of spent mushroom substrates (SMSs). Lignocellulosic composition, methanogenesis performance, and anaerobic microbial communities were investigated for different Tv pretreatment durations (0 h, 12 h, 24 h, 48 h, 96 h, and 192 h). The results showed that the optimal Tv pretreatment duration was 24 h, and the cumulative methane yield reached 173.4 mL/gVS, which was 16.8% higher than that of the control. A pretreatment duration longer than 48 h was not conducive to methanogenesis. Sequencing analysis of anaerobic microbial communities showed that the pretreatment duration was directly proportional to the relative abundance of Tv at the beginning of digestion. When the initial Tv abundance was higher than 50%, Trichoderma became the absolute dominant fungus with an abundance higher than 97% in fungal communities in the later stage of digestion. The correlation network among fungi, bacteria, and archaea showed that Tv was directly related to 11 genera, and through these taxa, Tv affected 58% of the taxa in the whole microbial network. Cost accounting showed that Tv pretreatment has a net income of 45.5 CNY/1000 kg SMS, and is a promising technology. This study provides important guidance for the use of fungal chlamydospores in pretreatment and also promotes the understanding of fungi in anaerobic digestion. Full article
(This article belongs to the Special Issue Lignin: Fermentation and Biorefinery Potential)
Show Figures

Figure 1

Back to TopTop