Fermentation Strategies to Enhance Feed Nutritional Value and Optimize Industry Resources

A special issue of Fermentation (ISSN 2311-5637). This special issue belongs to the section "Industrial Fermentation".

Deadline for manuscript submissions: closed (30 June 2025) | Viewed by 2151

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Fisheries, Kagoshima University, Kagoshima, Japan
Interests: animal nutrition; bio-enzyme; antioxidant; probiotic; fermentation; immunology; intestinal microorganism
Special Issues, Collections and Topics in MDPI journals
Institute of Aquaculture, University of Stirling, Stirling, UK
Interests: crustacean; phospholipids; sustainable aquaculture; aquaculture welfare; aquaculture nutrition; feed additives; interaction of aquaculture feed and the environment; aquaponics
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
Interests: aquaculture nutrition; carotenoids metabolism in crustaceans; live food cultivatology; functional feed additive
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

In recent years, the global demand for high-quality sustainable animal feed has grown significantly. Fermentation offers a promising approach to address the challenges faced by the feed industry, particularly in enhancing the nutritional value of raw materials and optimizing the use of available resources. By improving the digestibility, protein content, and bioavailability of essential nutrients, fermentation can significantly reduce reliance on conventional feed ingredients such as fish- and soybean meal. Furthermore, fermentation processes can increase the presence of bioactive compounds, probiotics, and antioxidants, contributing to better animal health, growth performance, and environmental sustainability.

This Special Issue focuses on innovative fermentation strategies and their application in the feed industry, exploring novel methods, microbial solutions, and substrates which can enhance feed quality and efficiency. We welcome research papers, reviews, and case studies that contribute to the understanding and development of fermentation technologies aimed at optimizing raw material utilization, improving feed efficiency, and supporting a more sustainable and resource-efficient feed production system.

We look forward to your valuable contributions to this exciting field.

Dr. Yukun Zhang
Dr. Amina Moss
Dr. Weilong Wang
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Fermentation is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2100 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • animal feed optimization
  • waste valorization
  • nutrient bioavailability
  • sustainable feed ingredients
  • microbial fermentation
  • feed efficiency improvement
  • protein enhancement in feed
  • gut health and microbiota
  • fishmeal replacement
  • soybean meal replacement

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 270 KiB  
Article
Performance, Metabolism, and Economic Implications of Replacing Soybean Meal with Dried Distillers Grains with Solubles in Feedlot Cattle Diets
by Andrei L. R. Brunetto, Guilherme L. Deolindo, Ana Luiza de F. dos Santos, Luisa Nora, Maksuel Gatto de Vitt, Renato S. de Jesus, Bruna Klein, Luiz Eduardo Lobo e Silva, Roger Wagner, Gilberto V. Kozloski and Aleksandro S. da Silva
Fermentation 2025, 11(7), 363; https://doi.org/10.3390/fermentation11070363 - 23 Jun 2025
Viewed by 417
Abstract
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing [...] Read more.
The growing demand for biofuels, especially ethanol produced from corn, has driven the production of co-products such as dried distillers grains with solubles (DDGS). With a high protein content (around 30%), fiber, and minerals, DDGS presents an economical alternative for animal nutrition, replacing traditional sources like soybean meal while maintaining productive performance and reducing costs. This study evaluated the total replacement of soybean meal with DDGS in the diet of confined Holstein cattle, focusing on weight gain, feed intake, digestibility, feed efficiency, animal health, meat quality, and economic viability. The 24 animals received diets with 80% concentrate, containing either DDGS or soybean meal, and no significant differences were observed in terms of body weight (p = 0.92), feed intake (p = 0.98), or feed efficiency (p = 0.97) between the two treatments. The average daily gain was 1.25 and 1.28 kg for cattle in the DDGS and soybean meal groups, respectively (p = 0.92). Regarding metabolic and digestive parameters, no relevant changes were found in blood levels, except for higher serum cholesterol (p = 0.03) levels in animals fed DDGS. The digestibility of neutral detergent fiber (NDF) (p = 0.03) and acid detergent fiber (ADF) (p = 0.05) was lower in the DDGS group, while the digestibility of ether extract was higher (p = 0.02). Rumen fluid analysis revealed an increase in the production of short-chain fatty acids (p = 0.01), such as acetic and butyric acids (p = 0.01), in the DDG-fed animals. In terms of meat quality, animals fed DDGS produced meat with lower levels of saturated fatty acids (SFA) (p = 0.05) and higher levels of unsaturated fatty acids (UFA) (p = 0.02), especially oleic acid (p = 0.05). This resulted in a healthier lipid profile, with a higher UFA/SFA ratio (p = 0.01). In terms of economic viability, DDGS-based diets were 10.5% cheaper, reducing the cost of production per animal by 7.67%. Profitability increased by 110% with DDGS compared to soybean meal, despite the high transportation costs. Therefore, replacing soybean meal with DDGS is an efficient and economical alternative for feeding confined cattle, maintaining zootechnical performance, increasing meat lipid content and improving fatty acid profile, and promoting higher profitability. This alternative is particularly advantageous in regions with easy access to the product. Full article
17 pages, 2461 KiB  
Article
Optimization of Palm Kernel Cake Bioconversion with P. ostreatus: An Efficient Lignocellulosic Biomass Value-Adding Process for Ruminant Feed
by Aldo Ibarra-Rondón, Dinary Eloisa Durán-Sequeda, Andrea Carolina Castro-Pacheco, Pedro Fragoso-Castilla, Rolando Barahona-Rosales and José Edwin Mojica-Rodríguez
Fermentation 2025, 11(5), 251; https://doi.org/10.3390/fermentation11050251 - 1 May 2025
Viewed by 516
Abstract
This study aims to optimize the bioconversion of palm kernel cake (PKC) by Pleurotus ostreatus to improve fungal biomass production, lignocellulolytic enzyme expression, and the nutritional value of the substrate as ruminant feed. Three inorganic nitrogen sources (ammonium sulfate, ammonium nitrate, and urea) [...] Read more.
This study aims to optimize the bioconversion of palm kernel cake (PKC) by Pleurotus ostreatus to improve fungal biomass production, lignocellulolytic enzyme expression, and the nutritional value of the substrate as ruminant feed. Three inorganic nitrogen sources (ammonium sulfate, ammonium nitrate, and urea) were evaluated for fungal biomass production using a central composite design (CCD) in liquid fermentations. The formulated culture medium (18.72 g/L glucose and 0.39 g/L urea) effectively yielded better fungal biomass production (8 g/L). Based on these results, an extreme vertex design, mixtures with oil palm by-products (PK, hull, and fiber) supplemented with urea, were formulated, finding that PKC stimulated the highest biomass production and laccase enzyme activity in P. ostreatus. The transcriptome of P. ostreatus was obtained, and the chemical composition of the fermented PKC was determined. Transcriptomic analysis revealed the frequency of five key domains with carbohydrate-activated enzyme (CAZy) function: GH3, GH18, CBM1, AA1, and AA5, with activities on lignocellulose. In the fermented PKC, lignin was reduced by 46.9%, and protein was increased by 69.8%. In conclusion, these results show that urea is efficient in the bioconversion of PKC with P. ostreatus as a supplement for ruminants. Full article
Show Figures

Figure 1

Back to TopTop