Topical Collection "Feature Papers in Bio-Energy"

A topical collection in Energies (ISSN 1996-1073). This collection belongs to the section "Bio-Energy".

Editors

Prof. Dr. Fernando Rubiera González
E-Mail Website
Guest Editor
Institute of Carbon Science and Technology, INCAR-CSIC, 26 Francisco Pintado Fe, 33011 Oviedo, Spain
Interests: carbon capture; adsorption; biomass; gasification; combustion; cofiring
Special Issues and Collections in MDPI journals
Dr. Covadonga Pevida García
E-Mail Website
Guest Editor
Institute of Carbon Science and Technology, INCAR-CSIC, 26 Francisco Pintado Fe, 33011 Oviedo, Spain
Interests: abatement of CO2 emissions; coal and biomass utilization; hydrogen production
Special Issues and Collections in MDPI journals

Topical Collection Information

Dear Colleagues,

This Special Issue of Energies is intended to present an ample variety of thematic areas in relation to all aspects of bio-energy production and use. Presently, there is an increasing concern of meeting energy demand while reducing dependency on fossil fuels. At the same time, a rapid global change to clean energy is urgently needed to prevent and mitigate the effects of climate change. These efforts are mostly directed towards replacing fossil fuels with renewable energy sources. This Special Issue has a wide scope and aims to collect high-quality research articles and review articles reflecting the latest progress in the research of bio-energy. In line with the scope of the Bio-Energy Section of Energies, topics in this Special Issue include but are not limited to biomass treatment, biofuels production by different conversion technologies, generation of heat and power from biofuels, and bio-energy and greenhouse gas emissions. We invite relevant experts in the above topics and colleagues to contribute feature papers reflecting the latest progress in their research field.

Prof. Fernando Rubiera González
Dr. Covadonga Pevida García
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All papers will be peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the collection website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2000 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • lignocellulosic biomass
  • microalgae
  • refinery
  • wastewater treatment
  • pyrolysis
  • gasification
  • microwave treatment
  • biochar
  • catalysis
  • beccs
  • bioethanol
  • biodiesel
  • biohydrogen
  • biofuel cells
  • anaerobic digestion

Published Papers (27 papers)

2021

Jump to: 2020

Open AccessArticle
Fast Pyrolysis of Cellulose by Infrared Heating
Energies 2021, 14(7), 1842; https://doi.org/10.3390/en14071842 - 26 Mar 2021
Viewed by 316
Abstract
The fast pyrolysis of cellulose produces levoglucosan (LG), but secondary pyrolysis reactions tend to reduce the yield. The present study assessed the fast pyrolysis of cellulose by infrared (IR) heating under nitrogen flow. Because the nitrogen was not efficiently heated, gaseous LG was [...] Read more.
The fast pyrolysis of cellulose produces levoglucosan (LG), but secondary pyrolysis reactions tend to reduce the yield. The present study assessed the fast pyrolysis of cellulose by infrared (IR) heating under nitrogen flow. Because the nitrogen was not efficiently heated, gaseous LG was immediately cooled, resulting in a maximum yield of 52.7% under optimized conditions. Slow nitrogen flow and a high IR power level provided a greater gas yield by raising the temperature of the cellulose, and the formation of CO could be used as an indicator of the gasification of LG. Glycolaldehyde (GA) was the major byproduct, and the GA yield remained relatively constant under all conditions. Accordingly, GA was not a secondary product from the LG but was likely produced from the reducing ends of cellulose and other intermediate carbohydrates. The pyrolysis of cellulose proceeded within a narrow region of carbonized material that absorbed IR radiation more efficiently. The bulk of each cellulose sample could be decomposed in spite of this heterogeneous process by maintaining fast pyrolysis conditions for a sufficient length of time. This technique is a superior approach to LG production compared with other fast pyrolysis methods based on heat conduction. Full article
Show Figures

Figure 1

Open AccessArticle
Thermodynamic Analysis of Biomass Gasification Using Aspen Plus: Comparison of Stoichiometric and Non-Stoichiometric Models
Energies 2021, 14(1), 189; https://doi.org/10.3390/en14010189 - 01 Jan 2021
Cited by 1 | Viewed by 810
Abstract
The gasification process involves several reactions that occur simultaneously and are interrelated by several independent variables. Simulation tools can help us to understand the process behaviour and predict the efficiency and final composition of the products. In this work, two thermodynamic equilibrium models [...] Read more.
The gasification process involves several reactions that occur simultaneously and are interrelated by several independent variables. Simulation tools can help us to understand the process behaviour and predict the efficiency and final composition of the products. In this work, two thermodynamic equilibrium models developed in Aspen Plus® software were assessed: a non-stoichiometric model based on the feedstock composition and on the most probable compounds expected from the results of the gasification process using minimisation of Gibbs free energy and a stoichiometric model based on a set of chemical reactions considered as the most relevant to describe the gasification process. Both models were validated with experimental data from a bubbling fluidised bed semi-pilot scale gasifier using pine kernel shells (PKS) as feedstock. The influence of temperature, stoichiometric ratio (SR) and steam to biomass ratio (SBR) were analysed. Overall, predictions of the gas composition and gasification efficiency parameters by the stoichiometric model showed better agreement to the experimental results. Our results point out the significance of an accurate description of the equilibrium composition of producer gas with the stoichiometric model for the gasification of biomass. Full article
Show Figures

Figure 1

2020

Jump to: 2021

Open AccessArticle
The Enhancement of Energy Efficiency in a Wastewater Treatment Plant through Sustainable Biogas Use: Case Study from Poland
Energies 2020, 13(22), 6056; https://doi.org/10.3390/en13226056 - 19 Nov 2020
Cited by 5 | Viewed by 543
Abstract
The improvement of energy efficiency ensuring high nutrients removal is a great concern for many wastewater treatment plants (WWTPs). The energy balance of a WWTP can be improved through the application of highly efficient digestion or its intensification, e.g., through the introduction of [...] Read more.
The improvement of energy efficiency ensuring high nutrients removal is a great concern for many wastewater treatment plants (WWTPs). The energy balance of a WWTP can be improved through the application of highly efficient digestion or its intensification, e.g., through the introduction of the co-substrates with relatively high energy potential to the sewage sludge (SS). In the present study, the overview of the energetic aspect of the Polish WWTPs was presented. The evaluation of energy consumption at individual stages of wastewater treatment along with the possibilities of its increasing was performed. Additionally, the influence of co-digestion process implementation on the energy efficiency of a selected WWTP in Poland was investigated. The evaluation was carried out for a WWTP located in Iława. Both energetic and treatment efficiency were analyzed. The energy balance evaluation of this WWTP was also performed. The obtained results indicated that the WWTP in Iława produced on average 2.54 GWh per year (7.63 GWh of electricity in total) as a result of the co-digestion of sewage sludge with poultry processing waste. A single cubic meter of co-substrates fed to the digesters yielded an average of 25.6 ± 4.3 Nm3 of biogas (between 18.3 and 32.2 Nm3/m3). This enabled covering the energy demand of the plant to a very high degree, ranging from 93.0% to 99.8% (98.2% on average). Importantly, in the presence of the co-substrate, the removal efficiency of organic compounds was enhanced from 64% (mono-digestion) to 69–70%. Full article
Show Figures

Figure 1

Open AccessArticle
Sustainable Production of Monoraphidium Microalgae Biomass as a Source of Bioenergy
Energies 2020, 13(22), 5975; https://doi.org/10.3390/en13225975 - 16 Nov 2020
Cited by 2 | Viewed by 381
Abstract
Microalgae are a renewable source of unconventional biomass with potential application in the production of various biofuels. The production of carbon-neutral fuels is necessary for protecting the environment. This work determined the possibility of producing biomass of microalgae belonging to Monoraphidium genus using [...] Read more.
Microalgae are a renewable source of unconventional biomass with potential application in the production of various biofuels. The production of carbon-neutral fuels is necessary for protecting the environment. This work determined the possibility of producing biomass of microalgae belonging to Monoraphidium genus using saline wastewater resulting from proecological salmon farming in the recirculating aquaculture system. The tests were carried out in tubular photobioreactors using LED light. As a part of the analyses, the growth and productivity of microalgal biomass, cell density in culture, and lipid concentration and ash content in biomass were determined. In addition, the concentration of selected phosphorus and nitrogen forms present in wastewater corresponding to the degree of their use by microalgae as a nutrient substrate was determined. The biomass concentration estimated in the tests was 3.79 g·L−1, while the maximum biomass productivity was 0.46 g·L−1·d−1. The cells’ optical density in culture measured at 680 nm was 0.648. The lipid content in biomass was 18.53% (dry basis), and the ash content was 32.34%. It was found that microalgae of the genus Monoraphidium effectively used the nitrogen as well as phosphorus forms present in the wastewater for their growth. The total nitrogen content in the sewage decreased by 82.62%, and total phosphorus content by over 99%. The analysis of the individual forms of nitrogen showed that N-NO3 was reduced by 85.37% and N-NO2 by 78.43%, while orthophosphate (V) dissolved in water was reduced by 99%. However, the content of N-NH4 in wastewater from the beginning till the end of the experiment remained <0.05 mg·L−1. Full article
Show Figures

Graphical abstract

Open AccessArticle
Mutual Interaction between Temperature and DO Set Point on AOB and NOB Activity during Shortcut Nitrification in a Sequencing Batch Reactor in Terms of Energy Consumption Optimization
Energies 2020, 13(21), 5808; https://doi.org/10.3390/en13215808 - 06 Nov 2020
Cited by 2 | Viewed by 651
Abstract
Recently, many wastewater treatment plants (WWTPs) have had to deal with serious problems related to the restrictive requirements regarding the effluent quality, as well as significant energy consumption associated with it. In this situation, mainstream deammonification and/or shortened nitrification-denitrification via nitrite (so-called “nitrite [...] Read more.
Recently, many wastewater treatment plants (WWTPs) have had to deal with serious problems related to the restrictive requirements regarding the effluent quality, as well as significant energy consumption associated with it. In this situation, mainstream deammonification and/or shortened nitrification-denitrification via nitrite (so-called “nitrite shunt”) is a new promising strategy. This study shows the mechanisms and operating conditions (e.g., dissolved oxygen (DO) concentration, temp.), leading to the complete domination of ammonium oxidizing bacteria (AOB) over nitrite oxidizing bacteria (NOB) under aerobic conditions. Its successful application as shortcut nitrification in the sequencing batch reactor (SBR) technology will represent a paradigm shift for the wastewater industry, offering the opportunity for efficient wastewater treatment, energy-neutral or even energy-positive facilities, and substantial reductions in treatment costs. In this study, under low and moderate temperatures (10–16 °C), averaged DO concentrations (0.7 mg O2/L) were preferable to ensure beneficial AOB activity over NOB, by maintaining reasonable energy consumption. Elevated temperatures (~30 °C), as well as increased DO concentration, were recognized as beneficial for the NOB activity stimulation, thus under such conditions, the DO limitation seems to be a more prospective approach. Full article
Show Figures

Figure 1

Open AccessArticle
A Comparison of the Influence of Kraft Lignin and the Kraft Lignin/Silica System as Cell Carriers on the Stability and Efficiency of the Anaerobic Digestion Process
Energies 2020, 13(21), 5803; https://doi.org/10.3390/en13215803 - 06 Nov 2020
Viewed by 469
Abstract
This study compares the effects of pure kraft lignin and the kraft lignin/silica system (1:4 by weight). The comparative analysis of the physicochemical properties of both carriers showed that the kraft lignin/silica system was characterised by better properties. The experiment conducted in the [...] Read more.
This study compares the effects of pure kraft lignin and the kraft lignin/silica system (1:4 by weight). The comparative analysis of the physicochemical properties of both carriers showed that the kraft lignin/silica system was characterised by better properties. The experiment conducted in the study involved continuous anaerobic digestion under mesophilic conditions. Three samples were degraded in the following order: (i) sewage sludge (SS), (ii) SS with the addition of kraft lignin, and (iii) SS with the addition of the kraft lignin/silica system. A quantitative analysis of the digestate samples was carried out by means of in situ fluorescence. It showed more intense proliferation of microorganisms in the SS + kraft lignin/silica variant than in the sample with pure kraft lignin. The highest amount of biogas was obtained in the SS + kraft lignin/silica variant (689 m3 Mg−1 VS, including 413 m3 Mg−1 VS of methane; VS—volatile solids). There were comparable amounts of biogas in the SS variant (526 m3 Mg−1 VS of biogas, including 51% of methane) and the SS + kraft lignin variant (586 m3 Mg−1 VS of biogas, including 54% of methane). The research clearly showed that the material with a high share of silica was an effective cell carrier. Full article
Show Figures

Figure 1

Open AccessArticle
Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth
Energies 2020, 13(21), 5769; https://doi.org/10.3390/en13215769 - 04 Nov 2020
Viewed by 373
Abstract
Metabolic products such as lipids and proteins produced in cyanobacteria represent an excellent source of biomass and do not compete with agricultural land use unlike soybean and corn. Given their potential use as novel materials for biodiesel production, we aimed to explore the [...] Read more.
Metabolic products such as lipids and proteins produced in cyanobacteria represent an excellent source of biomass and do not compete with agricultural land use unlike soybean and corn. Given their potential use as novel materials for biodiesel production, we aimed to explore the effect of cultivation period and nitrogen concentration on the growth rate and lipid content of Fremyella diplosiphon, a model cyanobacterium. In this study, F. diplosiphon grown in BG11/HEPES medium supplemented with 1.5 g L−1 sodium nitrate (NaNO3) for 7, 10, 15, and 20 days were compared to the untreated control in media amended with 0.25, 0.5, and 1.0 g L−1 NaNO3. Cultures were inoculated in liquid media and grown under continuous fluorescent light in an orbital incubator shaker, and extracted lipids subjected to gravimetric analysis and gas chromatography-mass spectroscopy to determine the best culture conditions for lipid production. Our results demonstrated that a reduction in nitrogen concentration had no significant effect on the growth rate across all cultivation periods; however, the accumulation of total lipid content was significantly influenced by nitrogen concentration. A maximum lipid production (40%) with no reduction in growth was observed in 10-day old cultures in a BG11/HEPES medium supplemented with 1.0 g L−1 NaNO3. Fatty acid methyl ester composition of transesterified lipids demonstrated high amounts of methyl palmitate (50–70%) followed by methyl octadecenoate (17–30%) in the accumulated lipids at all treatments. Trace quantities of methyl dodecanoate, methyl hexadecanoate, methyl octadecanoate, and methyl octadecadienoate (1–8%) were also observed in all tested samples, indicating that nitrogen deprivation in culture media increases lipid production without affecting growth. Full article
Show Figures

Figure 1

Open AccessArticle
Functional Properties and Microbiological Stability of Fatty Acid Methyl Esters (FAME) under Different Storage Conditions
Energies 2020, 13(21), 5632; https://doi.org/10.3390/en13215632 - 28 Oct 2020
Cited by 1 | Viewed by 353
Abstract
Biofuels used as biocomponents for transport fuels should meet quality requirements. Their properties have a significant impact on the proper functioning of the engine supply system and the wear of its components. Changes in the performance of biofuel functionality may already occur during [...] Read more.
Biofuels used as biocomponents for transport fuels should meet quality requirements. Their properties have a significant impact on the proper functioning of the engine supply system and the wear of its components. Changes in the performance of biofuel functionality may already occur during storage. Therefore, the present study aimed to evaluate changes in selected rheological and tribological parameters of higher fatty acid esters depending on the time and method of their storage by considering different types of substrates used for their production. The presence of possible microbiological contamination, which may affect the examined parameters of biofuels, was also analyzed. The dynamic viscosity of the biofuels tested changed depending on the substrate used. The biofuel produced from waste oil had the highest viscosity. Tribological studies show that both the linear wear of samples and the friction moment were higher after the storage period. The acid number of the esters did not exceed the permissible value recommended by the standard. The type of raw material used for the production of biodiesel and the conditions of its storage affected biodeterioration, proved by the growth of microorganisms. The highest number of microorganisms was recorded in biofuels prepared from waste oil. Full article
Show Figures

Graphical abstract

Open AccessArticle
The Major Driving Forces of the EU and US Ethanol Markets with Special Attention Paid to the COVID-19 Pandemic
Energies 2020, 13(21), 5614; https://doi.org/10.3390/en13215614 - 27 Oct 2020
Cited by 2 | Viewed by 492
Abstract
Ethanol is a widely produced fuel, as well as a fuel additive. Its price is closely related to the price of gasoline, its major substitute. This paper focuses on the impacts of the related variables on regional ethanol prices. Additionally, the length of [...] Read more.
Ethanol is a widely produced fuel, as well as a fuel additive. Its price is closely related to the price of gasoline, its major substitute. This paper focuses on the impacts of the related variables on regional ethanol prices. Additionally, the length of the price dataset made it possible to isolate the impacts of COVID-19 on the ethanol prices. Using multiple regression and Confirmatory Factor Analyses, we found no significant correlation between the European and US ethanol prices because the major influencing factors were regionally different. In the case of the European ethanol markets, the positive factors were wheat, maize, and potassium chloride prices, while the European sugar and diammonium phosphate prices were negative. In the US markets, gasoline, sugar, and most of the artificial fertilizer prices were positive, while wheat prices were negative. Based on factor analysis, artificial fertilizers and maize factors proved to be important to the European markets, while US ethanol prices were driven by the crude oil-gasoline and raw materials factors. The COVID variable showed no significant connection with the EU prices, but negatively affected the US ethanol prices. This is explained by the different market characteristics, as the US is not only the major consumer, but also the major producer of the different oil products. Therefore, COVID-19 had a double effect on their oil and ethanol markets. Full article
Show Figures

Figure 1

Open AccessArticle
Simulation of Mixing Intensity Profile for Bioethanol Production via Two-Step Fermentation in an Unbaffled Agitator Reactor
Energies 2020, 13(20), 5457; https://doi.org/10.3390/en13205457 - 19 Oct 2020
Viewed by 390
Abstract
Bioethanol synthesis techniques have been studied intensively due to the energy crisis and various environmental concerns. A two-step bioethanol production process was carried out multiple times in an unbaffled agitator tank. The parameters varied, including the fermentation temperature, the pH level, the amount [...] Read more.
Bioethanol synthesis techniques have been studied intensively due to the energy crisis and various environmental concerns. A two-step bioethanol production process was carried out multiple times in an unbaffled agitator tank. The parameters varied, including the fermentation temperature, the pH level, the amount of yeast, and the impeller type. Then, a simulation was used to obtain an image of the agitation behavior inside the agitator tank to compare the velocity profile of each type of impeller design. The impeller with eight blades was found to produce the highest flow velocity: 0.28 m/s. The highest concentration of bioethanol generated from the fermentation was 34 g/L, which was produced by using an eight-blade impeller at 30 °C, a pH level of 5, an agitation speed of 70 rpm, and 2 wt % yeast. The two-blade impeller produced the lowest bioethanol concentration, 18 g/L, under the same conditions. Ethanol concentration was found to peak at 40 °C and a pH level of 5. The geometry of the impeller, the fermentation temperature, and the pH level were each found to have a significant effect on the resulting bioethanol concentration according to the results of an ANOVA test. The amount of yeast had no effect on the fermentation reaction. Finally, the results demonstrated the possibility of using computational fluid dynamic modeling to determine the impeller’s behavior for the development of the bioethanol fermentation process. The simulation and experimental results from this research support the scaling up of a bioethanol production facility. Full article
Show Figures

Figure 1

Open AccessArticle
In Situ Sonification of Anaerobic Digestion: Extended Evaluation of Performance in a Temperate Climate
Energies 2020, 13(20), 5349; https://doi.org/10.3390/en13205349 - 14 Oct 2020
Viewed by 1411
Abstract
Increasing the efficiency of anaerobic digesters and improving sludge breakdown is vital to reducing the cost of biogas production and reducing the environmental consequences of sludge disposal. The performance of two unheated anaerobic digestion systems, one exposed to sound at <20 kHz by [...] Read more.
Increasing the efficiency of anaerobic digesters and improving sludge breakdown is vital to reducing the cost of biogas production and reducing the environmental consequences of sludge disposal. The performance of two unheated anaerobic digestion systems, one exposed to sound at <20 kHz by waterproofed speakers and one acting as a control, were compared for over a year. The digester systems were both composed of primary (11.4 m3) and secondary (3.8 m3) anaerobic tanks, facultative tertiary (3.0 m3) tanks and an aerobic holding tank from which effluent was mixed with feed and recirculated back to the system. Exposure of the gas saturated digestate to a low frequency sine wave induced numerous bubble harmonics up to, and presumably beyond, ultrasonic range, showing that sonification of a highly gaseous liquid might be used to accomplish low power ultrasonication of digestate at greater distances than is possible with conventional ultrasonic technology. Through the summer of 2019, the sound-treated system produced 27% more biogas than the control system, and 74 times more during the winter when biogas production by the control systems essentially ceased. Afterwards, the control system produced more biogas due to depletion of volatile solids in the sound-treated digester. Results show that sound can be used for faster digester startup and substitute for a share of heating requirements during cool months. Full article
Show Figures

Figure 1

Open AccessFeature PaperArticle
Calorific Power Improvement of Wood by Heat Treatment and Its Relation to Chemical Composition
Energies 2020, 13(20), 5322; https://doi.org/10.3390/en13205322 - 13 Oct 2020
Viewed by 697
Abstract
Chemical composition influences the calorific power of wood, mainly due to the calorific power of structural compounds and extractives. Heat treatment changes the chemical composition of treated wood. This work studies the relationship between chemical composition and calorific power improvement by heat treatment. [...] Read more.
Chemical composition influences the calorific power of wood, mainly due to the calorific power of structural compounds and extractives. Heat treatment changes the chemical composition of treated wood. This work studies the relationship between chemical composition and calorific power improvement by heat treatment. Samples were heat-treated by the ThermoWood process ® for 1 h and 2 h. High heating value (HHV) and chemical composition; lignin, cellulose, hemicelluloses and extractives in dichloromethane, ethanol, and water were determined. The HHV of untreated wood ranged between 18.54–19.92 MJ/kg and increased with heat treatment for all the tested species. A positive linear correlation was found between HHV and Klason lignin (R2 = 0.60). A negative trend was observed for holocellulose, cellulose, and hemicelluloses content against HHV, but with low determination coefficients for linear regression. The best adjust for polysaccharides was found for hemicelluloses content. A positive correlation could be found for dichloromethane extractives (R2 = 0.04). The same was obtained in relation to ethanol extractives with R2 = 0.20. For water and total extractives, no clear positive or negative trends could be achieved. The results showed that the HHV of wood increased with heat treatment and that this increase was mainly due to the increase in lignin content. Full article
Show Figures

Graphical abstract

Open AccessArticle
Catalytic Properties and Recycling of NiFe2O4 Catalyst for Hydrogen Production by Supercritical Water Gasification of Eucalyptus Wood Chips
Energies 2020, 13(17), 4553; https://doi.org/10.3390/en13174553 - 02 Sep 2020
Cited by 1 | Viewed by 586
Abstract
Nickel iron oxide (NiFe2O4) catalyst was prepared by the combustion reaction method and characterized by XRD, N2 adsorption/desorption, thermogravimetric analysis (TG), and temperature programmed reduction (TPR). The catalyst presented a mixture of oxides, including the NiFe2O [...] Read more.
Nickel iron oxide (NiFe2O4) catalyst was prepared by the combustion reaction method and characterized by XRD, N2 adsorption/desorption, thermogravimetric analysis (TG), and temperature programmed reduction (TPR). The catalyst presented a mixture of oxides, including the NiFe2O4 spinel and specific surface area of 32.4 m2 g−1. The effect of NiFe2O4 catalyst on the supercritical water gasification (SCWG) of eucalyptus wood chips was studied in a batch reactor at 450 and 500 °C without catalyst and with 1.0 g and 2.0 g of catalyst and 2.0 g of biomass for 60 min. In addition, the recyclability of the catalyst under the operating conditions was also tested using recovered and recalcined catalysts over three reaction cycles. The highest amount of H2 was 25 mol% obtained at 450 °C, using 2 g of NiFe2O4 catalyst. The H2 mol% was enhanced by 45% when compared to the non-catalytic test, showing the catalytic activity of NiFe2O4 catalyst in the WGS and the steam reforming reactions. After the third reaction cycle, the results of XRD demonstrated formation of coke which caused the deactivation of the NiFe2O4 and consequently, a 13.6% reduction in H2 mol% and a 5.6% reduction in biomass conversion. Full article
Show Figures

Figure 1

Open AccessArticle
Series of Combined Pretreatment Can Affect the Solubilization of Waste-Activated Sludge
Energies 2020, 13(16), 4165; https://doi.org/10.3390/en13164165 - 12 Aug 2020
Viewed by 594
Abstract
Various pretreatment methods have been combined and employed for maximizing the solubilization of waste-activated sludge (WAS). However, the question “by changing the series of applied combined pretreatments (CPs), can the solubilization efficiency of WAS be affected?” has never been addressed. In this study, [...] Read more.
Various pretreatment methods have been combined and employed for maximizing the solubilization of waste-activated sludge (WAS). However, the question “by changing the series of applied combined pretreatments (CPs), can the solubilization efficiency of WAS be affected?” has never been addressed. In this study, firstly, thermal (T), alkaline (A), and ultrasonic (U) pretreatments were individually applied at broad strengths (T = 80–120 °C for 30 min, A = pH 9–12, and U = 5–60 min at 300 W). Then, pretreatment conditions that caused similar solubilization (13.0%) (120 °C, pH 11, and 30 min for T, A, and U, respectively), were adopted for CP with reverse sequences of T&A, U&A, and T&U. A similar disintegration degree was observed in U→A and A→U, while a meaningful difference was found in T&A and T&U: T→A (28.3%), A→T (42.9%), T→U (22.9%), and U→T (27.1%). The difference in pretreatment series also affected the characteristics of soluble matters, which was analyzed by excitation emission matrix and molecular weight distribution. Due to these differences, the highest methane yield of 68.8% (based on (chemical oxygen demand) CODinput) was achieved at A→T, compared to T→A (62.3%). Our results suggested a simple strategy for increasing solubilization, at the same expense of energy, which might be beneficial in the following treatment process, such as dewatering and transportation. Full article
Show Figures

Graphical abstract

Open AccessReview
Advances of Carbon Capture and Storage in Coal-Based Power Generating Units in an Indian Context
Energies 2020, 13(16), 4124; https://doi.org/10.3390/en13164124 - 10 Aug 2020
Cited by 6 | Viewed by 857
Abstract
India is a nation with a diverse economy that requires tremendous resources to completely meet the desires of its compatriots in various sectors. In terms of energy resources and requirements, coal-based power plants can fulfill the bulk of these electricity needs. India is [...] Read more.
India is a nation with a diverse economy that requires tremendous resources to completely meet the desires of its compatriots in various sectors. In terms of energy resources and requirements, coal-based power plants can fulfill the bulk of these electricity needs. India is very reliant on coal, which is used in power plants as a primary energy source. However, the usage of coal energy at a higher level continuously pollutes the atmosphere. The Indian power market alone accounts for half of the country’s CO2 emissions, which implies that significant action is needed to contain environmental pollution. Carbon Capture and Storage (CCS) is a bridging technique and feasible alternative for the carbon fired plant processing of CO2. However, the application of CCS in coal-fired power stations is still uncommon in the nation. At the UNFCCC Paris Summit, India committed to reduce its carbon emission intensity by approximately 30–33% by 2030. In this work, several CCS systems, possible CO2 origins, and emission levels in India are discussed. Various advanced methods for CO2 capture and separation are also highlighted. Furthermore, the current work discusses CCS situations and the applications of CCS in India along with its manifold challenges. Full article
Show Figures

Figure 1

Open AccessArticle
Characterization of Chemically and Physically Activated Carbons from Lignocellulosic Ethanol Lignin-Rich Stream via Hydrothermal Carbonization and Slow Pyrolysis Pretreatment
Energies 2020, 13(16), 4101; https://doi.org/10.3390/en13164101 - 07 Aug 2020
Viewed by 749
Abstract
The aim of the present work is to investigate the possibility of producing activated carbons from the residual lignin stream of lignocellulosic ethanol biorefineries, as this represents an optimal opportunity to exploit a residual and renewable material in the perspective of sustainable bioeconomy, [...] Read more.
The aim of the present work is to investigate the possibility of producing activated carbons from the residual lignin stream of lignocellulosic ethanol biorefineries, as this represents an optimal opportunity to exploit a residual and renewable material in the perspective of sustainable bioeconomy, increasing biorefinery incomes by producing value-added bioproducts in conjunction with biofuels. Activated carbons (ACs) were produced via chemical (KOH) and physical (CO2) activation. Char samples were obtained by slow pyrolysis (SP) and hydrothermal carbonization (HTC). Several HTC experiments were carried out by varying residence time (0.5–3 h) and reaction temperature (200–270 °C), in order to evaluate their influence on the product yield and on the morphological characteristics of the hydrochar (specific surface area, total pore volume and pore size distribution). ACs from hydrochars were compared with those obtained from pyrochar (via physical activation) and from the raw lignin-rich stream (via chemical activation). In both cases, by increasing the HTC temperature, the specific surface of the resulting activated carbons decreased from 630 to 77 m2 g−1 for physical activation and from 675 to 81 m2 g−1 for chemical activation, indicating that an increase in the severity of the hydrothermal pretreatment is deleterious for the activated carbons quality. In addition, the HTC aqueous samples were analyzed, with GC-MS and GC-FID. The results suggest that at low temperatures the reaction mechanisms are dominated by hydrolysis, instead when the temperature is increased to 270 °C, a more complex network of reactions takes place among which decarboxylation. Full article
Show Figures

Graphical abstract

Open AccessArticle
Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis
Energies 2020, 13(15), 3977; https://doi.org/10.3390/en13153977 - 02 Aug 2020
Viewed by 745
Abstract
The main purpose of this paper was to compare the pyrolysis kinetics of three types of energy crops: Miscanthus giganteus, Sida hermaphrodita, and Sorghum Moench. Studies were conducted in thermobalance. Feedstock samples were heated up from ambient temperature to 600 °C under an [...] Read more.
The main purpose of this paper was to compare the pyrolysis kinetics of three types of energy crops: Miscanthus giganteus, Sida hermaphrodita, and Sorghum Moench. Studies were conducted in thermobalance. Feedstock samples were heated up from ambient temperature to 600 °C under an inert argon atmosphere. Three heating rates of β = 5, 10, and 20 °C/min were applied. Reactions occurring in the given temperature ranges were grouped together into so-called lumps identified by the deconvolution of derivative thermogravimetry (DTG) curves that corresponded to biomass compositions (hemicellulose, cellulose, and lignin). For the estimation of the activation energy and pre-exponential factor, the Friedman and Ozawa–Flynn–Wall methods were used. The final kinetic parameters were determined by nonlinear regression assuming that thermal decomposition proceeded via three parallel independent reactions of the nth order. The activation energy of hemicellulose, cellulose and lignin was determined to be in the range of 92.9–97.7, 190.1–192.5, and 170–175.2 kJ/mol, respectively. The reaction order was in the range of 3.35–3.99 for hemicellulose, 1.38–1.93 for cellulose, and 3.97–3.99 for lignin. The obtained results allow us to estimate the pyrolytic potential of energy crops selected for this study, and can be used in designing efficient pyrolizers for these materials. Full article
Show Figures

Figure 1

Open AccessArticle
Using a Crop Model to Benchmark Miscanthus and Switchgrass
Energies 2020, 13(15), 3942; https://doi.org/10.3390/en13153942 - 01 Aug 2020
Cited by 1 | Viewed by 466
Abstract
Crop yields are important items in the economic performance and the environmental impacts of second-generation biofuels. Since they strongly depend on crop management and pedoclimatic conditions, it is important to compare candidate feedstocks to select the most appropriate crops in a given context. [...] Read more.
Crop yields are important items in the economic performance and the environmental impacts of second-generation biofuels. Since they strongly depend on crop management and pedoclimatic conditions, it is important to compare candidate feedstocks to select the most appropriate crops in a given context. Agro-ecosystem models offer a prime route to benchmark crops, but have been little tested from this perspective thus far. Here, we tested whether an agro-ecosystem model (CERES-EGC) was specific enough to capture the differences between miscanthus and switchgrass in northern Europe. The model was compared to field observations obtained in seven long-term trials in France and the UK, involving different fertilizer input rates and harvesting dates. At the calibration site (Estrées-Mons), the mean deviations between simulated and observed crop biomass yields for miscanthus varied between −0.3 t DM ha−1 and 4.2 t DM ha−1. For switchgrass, simulated yields were within 1.0 t DM ha−1 of the experimental data. Observed miscanthus yields were higher than switchgrass yields in most sites and for all treatments, with one exception. Overall, the model captured the differences between both crops adequately, with a mean deviation of 0.46 t DM ha−1, and could be used to guide feedstock selections over larger biomass supply areas. Full article
Show Figures

Graphical abstract

Open AccessFeature PaperEditor’s ChoiceArticle
CFD Simulation and a Pragmatic Analysis of Performance and Emissions of Tomato Seed Biodiesel Blends in a 4-Cylinder Diesel Engine
Energies 2020, 13(14), 3688; https://doi.org/10.3390/en13143688 - 17 Jul 2020
Cited by 3 | Viewed by 778
Abstract
Rising global concerns about global warming caused by pollution from excessive fossil fuels consumption, along with the high price of them in diesel engines, are the important reasons to search for fuels which is readily available and do not have destructive effects on [...] Read more.
Rising global concerns about global warming caused by pollution from excessive fossil fuels consumption, along with the high price of them in diesel engines, are the important reasons to search for fuels which is readily available and do not have destructive effects on the environment. Biodiesel is arguably the most appropriate and sustainable alternative to diesel fuel. Tomato seeds are one of the potential sources of biodiesel. They make up about 72% by weight of tomato waste, which contains an average of 24% oil. Tomato seed oil (TSO) can be used as a cheap and non-edible source of biodiesel. This paper investigated, both experimentally and numerically, the effects of different diesel–TSOB (tomato seed oil biodiesel) blends on the performance and emissions parameters of a four-cylinder, four-stroke, indirect injection diesel engine. The main goal of the paper was the simulation of the formation process of the emissions in the combustion chamber. The experimentally measured parameters such as torque, brake specific fuel consumption, exhaust gas temperature, nitrogen oxides, carbon monoxide, carbon dioxide, particulate matter, peak in-cylinder pressure, in-cylinder temperature and Reaction_Progress_Variable at different engine loads and speeds from 1200 to 2400 rpm at increments of 200 rpm are analyzed through ANOVA. The highest brake specific fuel consumption (BSFC) was observed for pure diesel and the lowest for the fuel blend with 10% biodiesel. The fuel blend with 20% biodiesel produced the highest torque. The engine was modeled using the AVL FIRE software. The model simulation results revealed that the highest nitrogen oxide (NOx) is produced in the throat of the combustion chamber to the top of the piston, the place of carbon dioxides (CO2) formation is near the combustion chamber boundaries and the location of carbon monoxides (CO) formation is near the combustion chamber boundaries and at the center area of the top of the piston. These results also show that the particulate matter (PM) emissions are formed where the fuel is injected into the combustion chamber. Full article
Show Figures

Figure 1

Open AccessArticle
Steam Explosion Pretreatment of Beechwood. Part 1: Comparison of the Enzymatic Hydrolysis of Washed Solids and Whole Pretreatment Slurry at Different Solid Loadings
Energies 2020, 13(14), 3653; https://doi.org/10.3390/en13143653 - 15 Jul 2020
Cited by 2 | Viewed by 613
Abstract
Steam explosion is a well-known process to pretreat lignocellulosic biomass in order to enhance sugar yields in enzymatic hydrolysis, but pretreatment conditions have to be optimized individually for each material. In this study, we investigated how the results of a pretreatment optimization procedure [...] Read more.
Steam explosion is a well-known process to pretreat lignocellulosic biomass in order to enhance sugar yields in enzymatic hydrolysis, but pretreatment conditions have to be optimized individually for each material. In this study, we investigated how the results of a pretreatment optimization procedure are influenced by the chosen reaction conditions in the enzymatic hydrolysis. Beechwood was pretreated by steam explosion and the resulting biomass was subjected to enzymatic hydrolysis at glucan loadings of 1% and 5% employing either washed solids or the whole pretreatment slurry. For enzymatic hydrolysis in both reaction modes at a glucan loading of 1%, the glucose yields markedly increased with increasing severity and with increasing pretreatment temperature at identical severities and maximal values were reached at a pretreatment temperature of 230 °C. However, the optimal severity was 5.0 for washed solids enzymatic hydrolysis, but only 4.75 for whole slurry enzymatic hydrolysis. When the glucan loading was increased to 5%, glucose yields hardly increased for pretreatment temperatures between 210 and 230 °C at a given severity, and a pretreatment temperature of 220 °C was sufficient under these conditions. Consequently, it is important to precisely choose the desired conditions of the enzymatic hydrolysis reaction, when aiming to optimize the pretreatment conditions for a certain biomass. Full article
Show Figures

Figure 1

Open AccessArticle
Steam Explosion Pretreatment of Beechwood. Part 2: Quantification of Cellulase Inhibitors and Their Effect on Avicel Hydrolysis
Energies 2020, 13(14), 3638; https://doi.org/10.3390/en13143638 - 15 Jul 2020
Viewed by 478
Abstract
Biomass pretreatment is a mandatory step for the biochemical conversion of lignocellulose to chemicals. During pretreatment, soluble compounds are released into the prehydrolyzate that inhibit the enzymatic hydrolysis step. In this work, we investigated how the reaction conditions in steam explosion pretreatment of [...] Read more.
Biomass pretreatment is a mandatory step for the biochemical conversion of lignocellulose to chemicals. During pretreatment, soluble compounds are released into the prehydrolyzate that inhibit the enzymatic hydrolysis step. In this work, we investigated how the reaction conditions in steam explosion pretreatment of beechwood (severity: 3.0–5.25; temperature: 160–230 °C) influence the resulting amounts of different inhibitors. Furthermore, we quantified the extent of enzyme inhibition during enzymatic hydrolysis of Avicel in the presence of the prehydrolyzates. The amounts of phenolics, HMF, acetic acid and formic acid increased with increasing pretreatment severities and maximal quantities of 21.6, 8.3, 43.7 and 10.9 mg/gbeechwood, respectively, were measured at the highest severity. In contrast, the furfural concentration peaked at a temperature of 200 °C and a severity of 4.75. The presence of the prehydrolyzates in enzymatic hydrolysis of Avicel lowered the glucose yields by 5–26%. Mainly, the amount of phenolics and xylose and xylooligomers contributed to the reduced yield. As the maximal amounts of these two inhibitors can be found at different conditions, a wide range of pretreatment severities led to severely inhibiting prehydrolyzates. This study may provide guidelines when choosing optimal pretreatment conditions for whole slurry enzymatic hydrolysis. Full article
Show Figures

Figure 1

Open AccessReview
Pretreatment of Animal Manure Biomass to Improve Biogas Production: A Review
Energies 2020, 13(14), 3573; https://doi.org/10.3390/en13143573 - 10 Jul 2020
Cited by 5 | Viewed by 1049
Abstract
The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment [...] Read more.
The objective of this research is to present a review of the current technologies and pretreatments used in the fermentation of cow, pig and poultry manure. Pretreatment techniques were classified into physical, chemical, physicochemical, and biological groups. Various aspects of these different pretreatment approaches are discussed in this review. The advantages and disadvantages of its applicability are highlighted since the effects of pretreatments are complex and generally depend on the characteristics of the animal manure and the operational parameters. Biological pretreatments were shown to improve methane production from animal manure by 74%, chemical pretreatments by 45%, heat pretreatments by 41% and physical pretreatments by 30%. In general, pretreatments improve anaerobic digestion of the lignocellulosic content of animal manure and, therefore, increase methane yield. Full article
Show Figures

Figure 1

Open AccessReview
A Review on Bio-Based Catalysts (Immobilized Enzymes) Used for Biodiesel Production
Energies 2020, 13(11), 3013; https://doi.org/10.3390/en13113013 - 11 Jun 2020
Cited by 10 | Viewed by 776
Abstract
The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development [...] Read more.
The continuous increase of the world’s population results in an increased demand for energy drastically from the industrial and domestic sectors as well. Moreover, the current public awareness regarding issues such as pollution and overuse of petroleum fuel has resulted in the development of research approaches concerning alternative renewable energy sources. Amongst the various options for renewable energies used in transportation systems, biodiesel is considered the most suitable replacement for fossil-based diesel. In what concerns the industrial application for biodiesel production, homogeneous catalysts such as sodium hydroxide, potassium hydroxide, sulfuric acid, and hydrochloric acid are usually selected, but their removal after reaction could prove to be rather complex and sometimes polluting, resulting in increases on the production costs. Therefore, there is an open field for research on new catalysts regarding biodiesel production, which can comprise heterogeneous catalysts. Apart from that, there are other alternatives to these chemical catalysts. Enzymatic catalysts have also been used in biodiesel production by employing lipases as biocatalysts. For economic reasons, and reusability and recycling, the lipases urged to be immobilized on suitable supports, thus the concept of heterogeneous biocatalysis comes in existence. Just like other heterogeneous catalytic materials, this one also presents similar issues with inefficiency and mass-transfer limitations. A solution to overcome the said limitations can be to consider the use of nanostructures to support enzyme immobilization, thus obtaining new heterogeneous biocatalysts. This review mainly focuses on the application of enzymatic catalysts as well as nano(bio)catalysts in transesterification reaction and their multiple methods of synthesis. Full article
Show Figures

Figure 1

Open AccessArticle
Universal Kinetic Model to Simulate Two-Step Biodiesel Production from Vegetable Oil
Energies 2020, 13(11), 2994; https://doi.org/10.3390/en13112994 - 10 Jun 2020
Viewed by 522
Abstract
To date, to simulate biodiesel production, kinetic models from different authors have been provided, each one usually applied to the use of a specific vegetable oil and experimental conditions. Models, which may include esterification, besides transesterification simulation, were validated with their own experimental [...] Read more.
To date, to simulate biodiesel production, kinetic models from different authors have been provided, each one usually applied to the use of a specific vegetable oil and experimental conditions. Models, which may include esterification, besides transesterification simulation, were validated with their own experimental conditions and raw material. Moreover, information about the intermediate reaction steps, besides catalyst concentration variation, is either rare or nonexistent. Here, in this work, a universal mathematical model comprising the chemical kinetics of a two-step (esterification and transesterification) vegetable oil-based biodiesel reaction is proposed. The proposed model is universal, as it may simulate any vegetable oil biodiesel reaction from the literature. For this purpose, a mathematical model using the software MATLAB has been designed. Using the mathematical model, the estimation of mass variation with time, of both reactants and products, as well as glyceride conversion and homogeneous catalyst concentration variation (instead of only alcohol/catalyst solution) are allowed. Moreover, analysis of the influence of some important variables affecting the reaction kinetics of biodiesel production (e.g., catalyst concentration), along with comparison and model validation with data from different authors may be carried out. In addition, Supplementary material with a collection of 290 rate constants, derived from 55 different experiments using different vegetable oils and conditions is provided. Full article
Show Figures

Figure 1

Open AccessArticle
Development of Full-Cycle Utilization of Chlorella sorokiniana Microalgae Biomass for Environmental and Food Purposes
Energies 2020, 13(10), 2648; https://doi.org/10.3390/en13102648 - 22 May 2020
Cited by 7 | Viewed by 1060
Abstract
The application of microalgae biomass of Chlorella sorokiniana as environmentally friendly biosorbents for removing potentially toxic elements (PTE) from water and as a source of biofuel has been thoroughly studied. In this paper, we investigate its physicochemical properties infrared spectroscopy (IR spectra), microstructure, [...] Read more.
The application of microalgae biomass of Chlorella sorokiniana as environmentally friendly biosorbents for removing potentially toxic elements (PTE) from water and as a source of biofuel has been thoroughly studied. In this paper, we investigate its physicochemical properties infrared spectroscopy (IR spectra), microstructure, adsorption properties); we have managed to isolate the lipid complex, which amounted to 20% of dry biomass. Studies of the lipid complex showed that 80.02% of lipids are unsaturated fatty acids (C18:1, C18:2, C18:3). Additionally, we have investigated the efficiency of using the residual biomass obtained after lipid extraction for water purification from rare-earth metals (REM) and PTE. To increase the sorption properties of residual biomass, its thermal modification was carried out and sorption materials based on heat-treated residual biomass and chitosan were created. The physicochemical and mechanical properties of the obtained sorption materials were studied. The total sorption capacity was 31.9 mg/g for REM and 349.7 mg/g for PTE. Moreover, we propose a new method for the disposal of spent sorbents as additional fuel. Spent sorbents can be considered to be biofuel in terms of energy content (20.7 MJ*kg−1). The results of this study provide the basis for increased use of microalgae. Full article
Show Figures

Figure 1

Open AccessArticle
Chemical Looping Co-Gasification Characteristics of Cyanobacterial/Coal Blends
Energies 2020, 13(9), 2352; https://doi.org/10.3390/en13092352 - 08 May 2020
Viewed by 689
Abstract
The frequent outbreak of cyanobacteria bloom results in an urgent need for the resource utilization of cyanobacteria. However, the development of routine thermal treatment (i.e., gasification and pyrolysis) is hindered by the issue of high moisture content. In order to minimize the dewatering [...] Read more.
The frequent outbreak of cyanobacteria bloom results in an urgent need for the resource utilization of cyanobacteria. However, the development of routine thermal treatment (i.e., gasification and pyrolysis) is hindered by the issue of high moisture content. In order to minimize the dewatering requirement, this study investigated the chemical looping co-gasification of the cyanobacteria/coal mixture. The results showed that the residual moisture of cyanobacteria not only could serve as the gasifying agent of coal, but also presented a better gasification effect than the injecting steam. Meanwhile, blending cyanobacteria also improved the performance of coal chemical looping gasification in terms of the syngas quality, gasification rate, and carbon conversion efficiency. Cyanobacteria pyrolysis supplied abundant hydrocarbons and hydrogen-rich gases. The highest syngas yield of 1.26 Nm3/kg was obtained in the mixture fuel of 46 wt.% cyanobacteria and 54 wt.% coal under a 0.3 oxygen carrier-to-fuel ratio. A slight interaction effect was observed in the pyrolysis process, in which the reactivity of coal pyrolysis was enhanced by the oxygenated groups of cyanobacteria volatile. The dominant motive of the interaction effect was the catalytic effect of alkali metals of cyanobacteria ash on the coal gasification. However, the formation of aluminosilicates deactivated alkali metals and further inhibited the char gasification. The intensity of interaction effect was demonstrated to be highly relevant with the (Na + K)/Al molar ratio of ash. The most prominent interaction effect occurred for the sample with 82 wt.% cyanobacteria, but a negative interaction was observed in the sample with 10 wt.% cyanobacteria. Both homogeneous reaction and shrinking core models showed the excellent fitting performance in the char gasification process. However, these two models could not be applied to the initial pyrolysis process because of the intricate mechanisms. Full article
Show Figures

Graphical abstract

Open AccessArticle
Energy Value of Yield and Biomass Quality in a 7-Year Rotation of Willow Cultivated on Marginal Soil
Energies 2020, 13(9), 2144; https://doi.org/10.3390/en13092144 - 30 Apr 2020
Cited by 4 | Viewed by 774
Abstract
Bioenergy plays a major role as a renewable energy source in the European Union. Solid biomass is derived mainly as wood from forests and wood processing plants. Willow plantations set up on marginal lands can be a supplementary source of wood for energy [...] Read more.
Bioenergy plays a major role as a renewable energy source in the European Union. Solid biomass is derived mainly as wood from forests and wood processing plants. Willow plantations set up on marginal lands can be a supplementary source of wood for energy generation. This study aimed to determine the energy value of yield and the thermophysical properties and elemental composition of the biomass of 7-year rotation willow harvested on marginal soil. Three varieties and three clones were cultivated in the Eko-Salix system on three marginal soils in northern Poland: riparian, alluvial soil, classified as heavy complete humic alluvial soil (Obory); organic, peat–muck soil formed from peat (Kocibórz); very heavy mineral clay soil (Leginy). Favourable conditions for obtaining high energy value biomass were at Kocibórz and Obory with a high groundwater level. The energy value of biomass at Leginy was lower than at Kocibórz and Obory (by 33% and 26%, respectively). The Ekotur variety had the significantly highest yield energy value (217 GJ ha−1 year−1) among the varieties and clones under study. This feature at Kocibórz and Obory was 288 and 225 GJ ha−1 year−1, respectively, and 139 GJ ha−1 year−1 at Leginy. Moreover, the biomass of this variety contained less ash (1.1% d.m.), sulphur (0.03% d.m.) and nitrogen (0.28% d.m.), which is beneficial from the energy-use perspective. Notably, the yield energy value of the UWM 095 clone biomass was also high (167 GJ ha−1 year−1). This study showed that willow grown in the Eco-Salix system can be a significant source of energy contained in good-quality woody biomass. Full article
Show Figures

Figure 1

Back to TopTop