energies-logo

Journal Browser

Journal Browser

Geophysical Geothermal Reservoir Exploration, Monitoring, and Development – Volume II

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "J: Thermal Management".

Deadline for manuscript submissions: closed (25 July 2024) | Viewed by 4673

Special Issue Editors


E-Mail Website
Guest Editor
College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
Interests: combined near-surface geophysical exploration imaging and geothermal reservoir monitoring
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Geophysicist at the Earth and Environmental Sciences Division, Los Alamos National Laboratory (LANL), Los Alamos, NM, USA
Interests: geothermal monitoring with geophysics and machine learning methods

E-Mail Website
Guest Editor
1. College of Geo-exploration Science and Technology, Jilin University, Changchun 130026, China
2. Key Laboratory of Applied Geophysics, Ministry of Natural Resources of PRC, Changchun 130026, China
3. Ministry of Land and Resources Key Laboratory of Applied Geophysics, Jilin University, Changchun 130026, China
Interests: electromagnetic inversion and geological interpretation
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hot dry rock (HDR) geothermal or supercritical geothermal systems are a clean renewable energy source of great developmental value. Geophysical methods, such as magnetotelluric (MT), distributed acoustic sensing (DAS), and gravitational, active, and passive seismic methods, are important technical means in the exploration, development, and monitoring of HDR reservoirs based on the differences in reservoir physics parameters. The conventional geothermal–geophysical methods focus on the reservoir interpretation and evaluation of the HDR target site. This does not provide details about the formation mechanisms of HDR thermal storage and the temporal and spatial variation in the geothermal heat flux, especially for the monitoring of reservoir intrinsic parameters before and after artificial fracturing, such as the extension of fractures in the reservoir, the distribution of fluid migration, and reservoir permeability. Based on the gravitational anomaly, electrical parameters (resistivity, impedance phase), and reservoir velocity changes, we combine geophysical methods to monitor reservoir parameter variations and build a dynamic reservoir model from different scales and parameters. The machine learning (ML) method is used to organize and classify geophysical data and to correct and calculate the reservoir dynamic model to predict the variation in reservoir intrinsic parameters. In this Special Issue, we want to present papers on geothermal resource exploration, monitoring, and development for HDR or deep supercritical geothermal systems. We also would like to address geothermal resource/reserve classifications and their mutual relations. We also invite authors specializing in technological novelties in geothermal exploration, monitoring, and development. This Special Issue calls for theoretical and empirical papers focusing on the following topics:

  • Geothermal reservoir monitoring by geophysics methods;
  • Geothermal reservoir prediction by deep learning;
  • Geothermal reservoir modeling and simulation;
  • Geothermal multi-field coupling and geothermal well development;
  • Supercritical geothermal systems.

Prof. Dr. Jing Li
Dr. Kai Gao
Prof. Dr. Zhaofa Zeng
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Related Special Issue

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

15 pages, 24596 KiB  
Article
Deep Geothermal Resources with Respect to Power Generation Potential of the Sinian–Cambrian Formation in Western Chongqing City, Eastern Sichuan Basin, China
by Xiaochuan Wu, Wei Wang, Lin Zhang, Jinxi Wang, Yuelei Zhang and Ye Zhang
Energies 2024, 17(16), 4045; https://doi.org/10.3390/en17164045 - 15 Aug 2024
Cited by 1 | Viewed by 1073
Abstract
The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, [...] Read more.
The Rongchang–Dazu region in western Chongqing (eastern Sichuan Basin, China), known for its seismic activity, is a promising area for deep geothermal resource development; however, practical development is limited. Key geological understandings, such as heat flux, geothermal gradients, the nature of heat sources, thermal reservoir rock characteristics, and the classification of geothermal resources, remain in need of further study. In this work, the targeted area is surrounded by Sinian–Cambrian carbonate gas fields. An analysis of the deep geothermal prospects was conducted using exploration and development data from the Gaoshiti–Moxi gas fields within the Longwangmiao and Dengying Formations. The results indicate that the Rongchang–Dazu area has relatively high heat flow values and geothermal gradients within the Sichuan Basin, correlating with fault structure and seismic activity. Gas test data confirm that the Longwangmiao Formation in the study area reaches depths of 4000 to 4500 metres and exhibits anomalous pressures and temperatures exceeding 140 °C. Meanwhile, the Dengying Formation of the Sinian system lies at depths of 5000 to 5500 metres, with normal pressure, minimal water production, and temperatures exceeding 150 °C, characterising it as a dry-hot rock resource. Adjacent to western Chongqing, the Gaoshiti area within the Longwangmiao Formation, with an estimated flow rate of 100 kg/s, shows that the dynamic investment payback period is significantly shorter than the estimated 30-year life of a geothermal power plant, indicating strong economic viability. Deep geothermal resource development aids in conserving gas resources and enhancing the energy mix in western Chongqing. Future research should prioritise understanding the links between basement faults, seismic activity, and heat flow dynamics. Full article
Show Figures

Figure 1

17 pages, 10753 KiB  
Article
Subsurface Imaging by a Post-Stimulation Walkaway Vertical Seismic Profile Using Distributed Acoustic Sensing at the Utah FORGE Enhanced Geothermal System Site
by Yin-Kai Wang and Robert R. Stewart
Energies 2024, 17(13), 3119; https://doi.org/10.3390/en17133119 - 25 Jun 2024
Cited by 1 | Viewed by 1246
Abstract
A 2D walkway vertical seismic profile (VSP) survey was conducted using a distributed acoustic sensing (DAS) system in southwest Utah, which is part of an enhanced geothermal system (EGS) project. The VSP was undertaken to obtain detailed structural information for a better understanding [...] Read more.
A 2D walkway vertical seismic profile (VSP) survey was conducted using a distributed acoustic sensing (DAS) system in southwest Utah, which is part of an enhanced geothermal system (EGS) project. The VSP was undertaken to obtain detailed structural information for a better understanding of the area’s subsurface geology and associated fracture development. By combining a 3D composite velocity model from previous studies and considering the complex geological structure beneath this region, we processed the data to create P-P depth image. We also modified the interval Q calculation using a moving window over the gauge-length corrected DAS record to generate the velocity profile and the comparable interval attenuation curve. The correlated P-P images from two DAS records successfully indicate not only the main contact between shallow unconsolidated sediments and the metamorphic basement rocks at 2650 ft (807.72 m) but also several distinct reflections related to the geological contacts. The refined velocity profiles and the depth images can provide baseline results for further seismic modeling and time-lapse imaging. Full article
Show Figures

Figure 1

33 pages, 31726 KiB  
Article
Seismic Characterization of the Blue Mountain Geothermal Field
by Kai Gao, Lianjie Huang and Trenton Cladouhos
Energies 2023, 16(15), 5822; https://doi.org/10.3390/en16155822 - 5 Aug 2023
Cited by 1 | Viewed by 1820
Abstract
Subsurface characterization is crucial for geothermal energy exploration and production. Yet hydrothermal reservoirs usually reside in highly fractured and faulted zones where accurate characterization is very challenging because of low signal-to-noise ratios of land seismic data and lack of coherent reflection signals. We [...] Read more.
Subsurface characterization is crucial for geothermal energy exploration and production. Yet hydrothermal reservoirs usually reside in highly fractured and faulted zones where accurate characterization is very challenging because of low signal-to-noise ratios of land seismic data and lack of coherent reflection signals. We perform an active-source seismic characterization for the Blue Mountain geothermal field in Nevada using active seismic data to reveal the elastic medium property complexity and fault distribution at this field. We first employ an unsupervised machine learning method to attenuate groundroll and near-surface guided-wave noise and enhance coherent reflection and scattering signals from noisy seismic data. We then build a smooth initial P-wave velocity model based on an existing magnetotellurics survey result, and use 3D first-arrival traveltime tomography to refine the initial velocity model. We then derive a set of elastic wave velocities and anisotropic parameters using elastic full-waveform inversion, and obtain PP and PS images using elastic reverse-time migration. We identify major faults by analyzing the variations of seismic velocities and anisotropy parameters, and reveal mid- to small-scale faults by applying a supervised machine learning method to the seismic migration images. Our characterization reveals complex velocity heterogeneities and anisotropies, as well as faults, with a high spatial resolution. These results can provide valuable information for optimal placement of future injection and production wells to increase geothermal energy production at the Blue Mountain geothermal power plant. Full article
Show Figures

Figure 1

Back to TopTop