energies-logo

Journal Browser

Journal Browser

New Power System Planning and Scheduling

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "F1: Electrical Power System".

Deadline for manuscript submissions: 25 September 2025 | Viewed by 652

Special Issue Editor

College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Interests: power system design planning and optimal operation; renewable energy power system
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As energy demand continues to rise, the transition to power systems characterized by a significant integration of renewable energy sources is becoming an unavoidable trend. In comparison to traditional power systems, the emerging paradigm, which incorporates numerous power electronic components, exhibits enhanced flexibility and regulatory capabilities. However, a fundamental shift has occurred in the primary sources of electricity generation within this new framework. The inherent intermittency, volatility, and uncertainty associated with renewable energy sources complicate the stable operation of power systems. Concurrently, the widespread utilization of power electronics has introduced a range of challenges. Consequently, existing planning and dispatch models for traditional power systems are ill-equipped to address the diverse elements of this new paradigm, necessitating the development of innovative planning and dispatch models that are tailored to the contemporary context. Furthermore, advances in digitalization, intelligence, and the emergence of digital twin technology offer sophisticated tools and methodologies for the dynamic modelling of new power systems.

In response to this, the journal Energies has organized a Special Issue entitled “New Power System Planning and Scheduling”, aimed at collaboratively exploring recent advancements, theoretical contributions, technological applications, and standards pertinent to new power systems. This effort seeks to foster comprehensive research and technological innovation within the realm of smart low-carbon energy systems.

Dr. Yue Yin
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • new power systems
  • power system planning
  • power supply guarantees
  • power system operation optimization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

24 pages, 7107 KiB  
Article
A Synergistic Planning Framework for Low-Carbon Power Systems: Integrating Coal-Fired Power Plant Retrofitting with a Carbon and Green Certificate Market Coupling Mechanism
by Zifan Tang, Yue Yin, Chao Chen, Changle Liu, Zhuoxun Li and Benyao Shi
Energies 2025, 18(9), 2403; https://doi.org/10.3390/en18092403 - 7 May 2025
Viewed by 221
Abstract
The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes [...] Read more.
The intensifying impacts of climate change induced by carbon emissions necessitate the implementation of urgent mitigation strategies. Given that the power sector is a major contributor to global carbon emissions, strategic decarbonization planning in this sector is of paramount importance. This study proposes a synergistic planning framework for low-carbon power systems that integrates coal-fired power plants (CFPPs) and a carbon and green certificate market coupling mechanism, thereby facilitating a “security–economic–low-carbon” tri-objective transition in power systems. The proposed framework facilitates dynamic decision-making regarding the retrofitting of CFPPs, investments in renewable energy resources, and energy storage systems. By evaluating three distinct CFPP retrofitting pathways, the framework enhances economic efficiency and reduces carbon emissions, achieving reductions of 28.67% in total system costs and 2.96% in CO2 emissions. Implementing the carbon–green certificate market coupling mechanism further unlocks the market value of green certificates, thereby providing economic incentives for clean energy projects and increasing flexibility in the allocation of carbon emission quotas for enterprises. Relative to cases that consider only carbon trading or only green certificate markets, the coupled mechanism reduces the total cost by 10.96% and 15.56%, and decreases carbon emissions by 27.10% and 47.36%, respectively. The collaborative planning framework introduced in this study enhances economic performance, increases renewable energy penetration, and reduces carbon emissions, thus facilitating the low-carbon transition of power systems. Full article
(This article belongs to the Special Issue New Power System Planning and Scheduling)
Show Figures

Figure 1

Back to TopTop