energies-logo

Journal Browser

Journal Browser

Chemical Hydrogen Storage Materials for Hydrogen Generation

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A5: Hydrogen Energy".

Deadline for manuscript submissions: 15 May 2025 | Viewed by 1220

Special Issue Editor


E-Mail Website
Guest Editor
Mechanical Engineering and Design Department, Université de Technologie de Belfort-Montbéliard, 90400 Sevenans, France
Interests: materials for energy; additive manufacturing; hydrogen storage; magnetic materials
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Hydrogen is expected to play a key role as an energy carrier in future energy systems of the world. However, hydrogen storage is a crucial step in supplying hydrogen fuel to an end user, both for embedded systems and energy storage for stationary applications.

Without effective and efficient storage systems, a hydrogen economy will be difficult to achieve. Hydrogen storage in solid materials constitutes alternatives that possess the potential to surpass the storage densities of compressed and liquid hydrogen. In particular, the high volumetric density, storage at near-ambient conditions, and significantly improved safety are important driving forces for research activities for hydrogen storage in solid compounds.

This Special Issue aims to collect original research or review articles on different classes of materials for hydrogen storage both from a fundamental and an applied point of view. Different types of materials for solid hydrogen storage, including metal and complex hydrides, perovskites, nanotubes and magnetic materials, spinel ferrites, high-entropy alloys and nanoporous materials, will be considered.

Prof. Dr. Nouredine Fenineche
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • materials for energy
  • additive manufacturing
  • hydrogen storage
  • magnetic materials
  • perovskites
  • nanotubes
  • spinel ferrites
  • high-entropy alloys
  • nanoporous materials

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

32 pages, 2787 KiB  
Article
Blue Ammonia and the Supply Chain Pioneering Sustainability Assessment for a Greener Future
by Hussein Al-Yafei, Saleh Aseel, Ahmed Alnouss, Ahmad Al-Kuwari, Nagi Abdussamie, Talal Al Tamimi, Hamad Al Mannaei, Heba Ibrahim, Noor Abu Hashim, Bader Al Delayel and Hagar Nasr
Energies 2025, 18(5), 1137; https://doi.org/10.3390/en18051137 - 25 Feb 2025
Viewed by 640
Abstract
With the global shift to sustainability, the energy sector faces pressure to adopt low-carbon solutions. Blue ammonia (BA), derived from natural gas (NG) with carbon capture, presents significant opportunities but requires a holistic sustainability assessment. This study conducts a novel life cycle sustainability [...] Read more.
With the global shift to sustainability, the energy sector faces pressure to adopt low-carbon solutions. Blue ammonia (BA), derived from natural gas (NG) with carbon capture, presents significant opportunities but requires a holistic sustainability assessment. This study conducts a novel life cycle sustainability assessment (LCSA) of BA, evaluating environmental, economic, and social impact performance from feedstock processing to maritime transport for a 1.2 MMTPA production capacity. Process simulations in Aspen HYSYS V12 and the ammonia maritime transport operations’ sustainability assessment model provide critical insights. The ammonia converter unit contributes the highest emissions (17.9 million tons CO2-eq), energy use (963.2 TJ), and operational costs (USD 189.2 million). CO2 removal has the most considerable land use (141.7 km2), and purification records the highest water withdrawal (14.8 million m3). Carbon capture eliminates 6.5 million tons of CO2 annually. Economically, ammonia shipping dominates gross surplus (USD 653.9 million, 72%) and tax revenue (USD 65.3 million) despite employing just 43 workers. Socially, the ammonia converter unit has the highest human health impact (16,621 DALY, 54%). Sensitivity analysis reveals transport distance (46.5% CO2 emissions) and LNG fuel prices (63.8% costs) as key uncertainties. Findings underscore the need for optimized logistics and alternative fuels to enhance BA sustainability. Full article
(This article belongs to the Special Issue Chemical Hydrogen Storage Materials for Hydrogen Generation)
Show Figures

Figure 1

Back to TopTop