energies-logo

Journal Browser

Journal Browser

Biomass Power Generation and Gasification Technology

A special issue of Energies (ISSN 1996-1073). This special issue belongs to the section "A4: Bio-Energy".

Deadline for manuscript submissions: 19 December 2025 | Viewed by 1379

Special Issue Editors


E-Mail Website
Guest Editor
Faculty of Engineering, University of Porto, 4200 Porto, Portugal
Interests: biomass gasification; gasification modeling; hydrogen; combined heat and power
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
Faculty of Engineering, University of Porto, 4200 Porto, Portugal
Interests: CHP; BIGCC; CFD; gasification processes; heat transfer; fluid mechanics
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

Biomass can be burned, gasified, fermented, biologically digested, or transformed into liquid fuels that power a generator to provide energy. Carbon-neutral electricity may be achieved in the specific case of biomass-based gasification being integrated with power networks. However, in comparison to other methods of utilizing biomass energy, biomass gasification has not yet solidified its position. Despite its benefits in areas such as increased efficiency and lower CO2 emissions, gasification has not gained enough traction to increase its level of implementation in research, recent plant construction, or even government support. This is because the biomass energy conversion methods listed above are strong competitors.

To endorse the exploitation of biomass gasification, innovative design concepts are required. These concepts must deal with the produced gas quality improvement, maximize the yields, increase the process efficiency, and improve the economic viability.

In this Special Issue, we are looking for contributions on the various biomass conversion methods, with special emphasis on the gasification processes. Topics include, but are not limited to, the following:

  • Biomass-based combined heat and power plants;
  • Biomass-based combined cycle plants;
  • Economic analysis of biomass-based power plants.

Dr. Eliseu Monteiro
Dr. Abel Rouboa
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Energies is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • biomass-based combined heat and power
  • biomass-based combined cycles
  • BIGCC

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

20 pages, 4849 KB  
Article
Experimental Investigation of Partial Flue Gas Recirculation During Load Changes in a 1 MWth SRF-Fired CFB Combustor
by Alexander Kuhn, Jochen Ströhle and Bernd Epple
Energies 2025, 18(19), 5227; https://doi.org/10.3390/en18195227 - 1 Oct 2025
Viewed by 296
Abstract
The increasing share of renewable energy sources in power grids demands greater load flexibility from thermal power plants. Circulating Fluidized Bed (CFB) combustion systems, while offering fuel flexibility and high thermal inertia, face challenges in maintaining hydrodynamic and thermal stability during load transitions. [...] Read more.
The increasing share of renewable energy sources in power grids demands greater load flexibility from thermal power plants. Circulating Fluidized Bed (CFB) combustion systems, while offering fuel flexibility and high thermal inertia, face challenges in maintaining hydrodynamic and thermal stability during load transitions. This study investigates partial flue gas recirculation (FGR) as a strategy to enhance short-term load flexibility in a 1 MWth CFB pilot plant fired exclusively with solid recovered fuel. Two experimental test series were conducted. Under conventional operation, where fuel and fluidization air are reduced proportionally, load reductions to 86% and 80% led to operating regime shift. Particle entrainment from the riser to the freeboard and loop seal decreased, circulation weakened, and the temperature difference between bed and freeboard zone increased by 71 K. Grace diagram analysis confirmed that the system approached the boundary of the circulating regime. In contrast, the partial FGR strategy maintained total fluidization rates by replacing part of the combustion air with recirculated flue gas. This stabilized pressure conditions, sustained particle circulation, and limited the increase in the temperature difference to just 7 K. Heat extraction in the freeboard remained constant or improved, despite slightly lower flue gas temperatures. While partial FGR introduces a minor efficiency loss due to the reheating of recirculated gases, it significantly enhances combustion stability and enables low-load operation without compromising fluidization quality. These findings demonstrate the potential of partial FGR as a control strategy for flexible, waste-fueled CFB systems and supports its application in future low-carbon energy systems. Full article
(This article belongs to the Special Issue Biomass Power Generation and Gasification Technology)
Show Figures

Figure 1

18 pages, 2570 KB  
Article
Gasification of Agricultural Biomass Residues for Sustainable Development of Mediterranean Europe Regions: Modelling and Simulation in Aspen Plus
by Elisa López-García, Diego Antonio Rodriguez-Pastor, Ricardo Chacartegui, Abel Rouboa and Eliseu Monteiro
Energies 2025, 18(16), 4298; https://doi.org/10.3390/en18164298 - 12 Aug 2025
Viewed by 855
Abstract
The utilisation of agricultural residues for power generation is an opportunity to reduce fossil fuel usage and foster a sustainable circular economy in Mediterranean European regions. This can be achieved by resorting to the gasification process, which faces challenges such as optimising its [...] Read more.
The utilisation of agricultural residues for power generation is an opportunity to reduce fossil fuel usage and foster a sustainable circular economy in Mediterranean European regions. This can be achieved by resorting to the gasification process, which faces challenges such as optimising its operation parameters on real-world applications and lowering operational costs. This work studies the gasification process of a set of agricultural biomasses widely available in the Mediterranean Europe regions through modelling and simulation in Aspen Plus. The selected biomasses are olive stone, grapevine waste, and wheat straw. The effect of temperature, equivalence ratio, and steam-to-biomass ratio on gasifier performance and their effect on gas composition was assessed. The results indicate that olive stone and wheat straw performed best in terms of syngas composition and cold gas efficiency. The analyses show good gasification performance for temperatures above 750 °C, equivalence ratios ranging from 0.1 to 0.3, depending on the raw material and steam-to-biomass ratios below 0.1. The obtained values show the validity and the potential of a downdraft gasification reactor to be used with these abundant agricultural biomasses in the Mediterranean European region. Its integration with a reciprocating engine is a rational choice for distributed power generation. Full article
(This article belongs to the Special Issue Biomass Power Generation and Gasification Technology)
Show Figures

Figure 1

Back to TopTop